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Outline

The second part of the course contains some particular optimal stopping
problems related to mathematical finance.

The questions we consider concern problems of portfolio re-balancing
and choosing optimal moments of time to sell (or buy) stock.

Problems of this type play the central role in

the technical analysis of financial markets,

the field, which is much less theoretically developed in comparison with
the two other analyses: the fundamental and the quantitative ones.

Most of the methods in the technical analysis are based on empirical
evidence of “rules of thumb”, while we will try to present a mathematical
foundation for them.
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The contents of this part of the course

1. Overview of general facts from the optimal stopping theory

2. Stopping a Brownian motion at its maximum
Peskir, Shiryaev. Optimal stopping and free-boundary problems, 2006; sec. 30

3. Trading rule “Buy and hold”
Shiryaev, Xu, Zhou. Thou shalt buy and hold, 2008

4. Sequential hypothesis testing
Shiryaev. Optimal stopping rules, 2007; ch. 4

5. Sequential parameters estimation
Çetin, Novikov, Shiryaev. LSE preprint, 2012

6. Quickest disorder detection
Shiryaev. Optimal stopping rules, 2000; ch. IV

Shiryaev. Quickest detection problems: 50 years later, 2010
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1. General optimal stopping theory

Formulation of an optimal stopping problem

Let (Ω,F , (Ft)t>0,P) be a filtered probability space and a G = (Gt)t>0
be a stochastic process on it, where Gt is interpreted as the gain if the
observation is stopped at time t.

For a given time horizon T ∈ [0,∞], denote by MT the class of all
stopping times τ of the filtration (Ft)t (i. e. random variables 0 6 τ 6 T ,

which are finite a.s. and {ω : τ(ω) 6 t} ∈ Ft for all t > 0).

The optimal stopping problem

V = sup
τ∈MT

EGτ

consists in finding the quantity V and a stopping time τ∗ ∈ MT at
which the supremum is attained (if such τ∗ exists).
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If Gt is Ft-measurable for each t > 0, we say that the optimal stopping
problem V is a standard problem.

If Gt is not Ft-measurable, we say that the optimal stopping problem
V is a non-standard problem.

The general optimal stopping theory is well-developed for standard
problems. So, non-standard problems are typically solved by a reduction
to standard ones.

4/145



There are two main approaches to solve standard OS problems:

• Martingale approach operates with Ft-measurable functions Gt and
is based on
a) The method of backward induction (for the case of discrete time

and a finite horizon)
b) The method of essential supremum

• Markovian approach assumes that functions Gt have the Markovian
representation, i. e. there exists a strong Markov process Xt such that

Gt(ω) = G(t,Xt(ω))

with some measurable functions G(t, x), where x ∈ E and E is a
phase space of X.
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The method of backward induction

Suppose we have a filtered probability space (Ω,F , (Fn)n6N ,P), where
F0 ⊆ F1 ⊆ . . . ⊆ FN ⊆ F , and a random sequence G0, G1, . . . , GN ,
such that (for simplicity)

E|Gn| <∞ for each n = 0, 1, . . . , N.

Consider the problem
V = sup

τ∈MN

EGτ ,

where here MN is the class of integer-valued stopping times τ 6 N .
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To solve this problem we introduce (by backward induction) a special
stochastic sequence SN , SN−1, . . . , S0:

SN = GN , Sn = max{Gn,E(Sn+1 | Fn)},

which represents the maximum gain that is possible to obtain starting
at time n:

• If n = N , we have to stop and our gain is SN = GN .

• If n < N , we can either stop or continue. If we stop, our gain is Gn
and if we continue our gain is E(Sn+1 | Fn).

This reasoning suggests to consider the following candidate for the op-
timal stopping time:

τ̃ = inf{k 6 N : Sk = Gk},

i. e. to stop as soon as the maximum gain we can receive does not
exceed the immediate gain.
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The main properties of the method of backward induction are given by
the following theorem.

Theorem. The stopping time τ̃ and the sequence (Sn)n6N satisfy the
properties

(a) τ̃ is an optimal stopping time;

(b) if τ∗ is also optimal, then τN 6 τ∗ a.s.;

(c) the sequence (Sn)n6N is the smallest supermartingale which dom-
inates (Gn)n6N ;

(d) the stopped sequence (Sn∧τ̃ )n6N is a martingale.
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The method of essential supremum

This method extends the method of backward induction. Here, we
consider only a continuous-time problem

V T
t = sup

t6τ6T
EGτ .

We make the following assumptions:

1. (Gt)t>0 is right-continuous and left-continuous over stopping time
(if τn ↑ τ then Gτn → Gτ a.s.);

2. E sup
06t6T

|Gt| <∞ (where G∞ = 0 if T =∞).

Consider the Snell’s envelope S = (St)t>0 of the process Gt,

St = ess sup
τ>t

E(Gτ | Ft),

and define the Markov time

τ̃t = inf{u > t : Su = Gu}, where inf ∅ :=∞.
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Theorem If assumptions 1-2 above hold, and P(τ̃t <∞) for any t > 0,
then

(a) τ̃t is an optimal stopping time for Vt;

(b) if τ∗t is also optimal for Vt, then τ̃t 6 τ∗t a.s.;

(c) the process (Su)u>t is the smallest right-continuous supermartin-
gale which dominates (Gu)u>t;

(d) the stopped process (Su∧τ̃t)u>t is a right-continuous martingale;

(e) if P(τ̃t =∞) > 0 then there is no optimal stopping time for Vt.
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Markovian approach

Let (Xt)t>0 be a homogeneous strong Markov process on a probability
space

(Ω,F ,Px),

where x ∈ E (= Rd), Px(X0 = x) = 1, and x 7→ Px(A) is measurable
for each A ∈ F .

Consider an optimal stopping problem in the Markovian setting:

V (x) = sup
τ∈M

ExG(Xτ ), x ∈ E,

where M is the class of stopping times (finite Px-a.s for each x ∈ E)
of the filtration (FX

t )t>0, FX
t = σ(Xs; s 6 t).

G(x) is called the gain function, V (x) is called the value function.

For simplicity, we assume that Ex sup
t>0
|G(Xt)| <∞ for each x ∈ E.
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Introduce the two sets:

continuation set C = {x ∈ E : V (x) > G(x)},
stopping set D = {x ∈ E : V (x) = G(x)}.

It turns out that under rather general conditions the optimal stopping
time in problem V (x) is the first entry time to the stopping set:

τD = inf{t > 0 : Xt ∈ D}

(τD is a Markov time if X is right-continuous and D is closed).

Sufficient and necessary conditions for this fact can be found in the
first part of the course and in the book Optimal Stopping and Free-
boundary Problems by Peskir, Shiryaev (2006).

Remark. The case of a finite time horizon or a non-homogeneous pro-
cess X can be reduced to the above case by increasing the dimension
of the problem and considering the process (t,Xt).
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In fact, for a homogeneous Markovian optimal stopping problems with
the infinite time horizon it is often easier

to “guess” a candidate solution

and then to verify that it is indeed a solution.

The basic idea is that V (x) and C (or D) should solve the free-
boundary problem{

LXV 6 0,

V > G (V > G in C and V = G in D),

where LX is the characteristic (infinitesimal) operator of X.
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If X is a diffusion process, G is sufficiently smooth in a neighborhood
of ∂C, and ∂C is “nice”, then the above system of inequalities splits
into the conditions

LXV = 0 in C

V = G in D

∂V

∂x

∣∣∣∣
∂C

=
∂G

∂x

∣∣∣∣
∂C

(smooth fit)

If X is a homogeneous 1-dimensional process, usually it is possible to
find the solution (V and ∂C) of this system explicitly, and then to
verify that it is also a solution of the optimal stopping problem.

The verification is typically based on some manipulations with the Itô
formula – the general idea will become clear when we consider specific
problems below.

14/145



Extension: integral functionals and discounting

Suppose, as above, that Xt is a homogeneous strong Markov process
and consider a more general optimal stopping problem:

V (x) = sup
τ∈M

Ex

[
e−λτG(Xτ ) +

∫ τ

0
e−λsL(Xs)ds

]
,

where L(x) is a function, and the discounting process λ = (λt)t>0 is
given by

λt =

∫ t

0
λ(Xs)ds,

with some function λ(x) : E → R+.

If the functions G, L, λ are “nice”, we obtain the following modification
of the condition on V in C (in addition to the condition V = G in D
and the smooth fit condition):

LXV (x)− λ(x)V (x) = −L(x) in C.
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2. Stopping a Brownian motion at its maximum

Let B = (Bt)t>0 be a standard Brownian motion on a probability space
(Ω,F ,P). Define the Brownian motion Bµ = (Bµ

t )t>0 with drift µ and
its running maximum Sµ = (Sµt )t>0:

Bµ
t = µt+Bt, Sµt = sup

06s6t
Bµ
s .

Let θ be the (P-a.s. unique) time at which the maximum of Bµ on
[0, 1] is attained (i. e. Bµ

θ = Sµ1 ).

We consider the following optimal stopping problem:

V µ = inf
τ∈M1

E|τ − θ|,

where M1 is the class of all stopping times τ 6 1 of the process Bµ.
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Financial interpretation

Suppose the price of stock is described by a geometric Brownian motion:

dXt = µXtdt+ σXtdBt ⇐⇒ Xt = X0 exp
(
(µ− σ2

2 )t+ σBt
)

If one holds the stock at time t = 0 and wants to sell it until time t = 1
then it would be the best to sell it at the time θ, when X attains its
maximum on [0, 1].

However

θ is not a stopping time,

so it is impossible to sell the stock at the time θ.

Thus, it is natural to consider the problem V µ of finding a stopping
time, which is as close as possible to θ.

(X attains its maximum when Bµ̃ = logX attains its maximum).
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Another approach could be to consider expected utility maximization:

EU(Sτ )→ max over τ ∈M1,

where U(x) is some utility function.

For example, for Uα(x) = xα, α ∈ (0, 1], or U0(x) = log(x) we have

• τ∗ = 0 if µ 6 (1− α)σ2/2 (in this case Sαt is a supermartingale)

• τ∗ = T if µ > (1− α)σ2/2 (Sαt is a submartingale)

However, the choice of a utility function is subjective; often it is not
clear why we should prefer one utility function over another.

In contrast, the criterion E|τ − θ| → min has a clear interpretation.
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Solution of the problem V 0

First we consider the case of a Brownian motion without drift (µ = 0),
as the case µ 6= 0 is considerably more difficult.

V 0 = inf
τ∈M1

E|τ − θ|, θ = arg max
06s61

Bs.

Observe that the optimal stopping problem V 0 is non-standard accord-
ing to our terminology (because θ is not measurable w.r.t Fτ ). Thus,
our first step will be to reduce it to a standard problem.
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The main result about the solution of the problem V 0 is as follows.

Theorem. The value V 0 is given by the formula

V 0 = 2Φ(z∗)− 1 = 0.73 . . .

where z∗ = 1.12 . . . is the unique root of the equation

4Φ(z)− 2zϕ(x)− 3 = 0.

The following stopping time is optimal:

τ∗ = inf{0 6 t 6 1 : St −Bt > z∗
√

1− t}
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Proof of the theorem

Step 1. First we reduce the problem V 0 to a standard optimal stopping
problem by showing that for any stopping time τ ∈M1 we have

E|τ − θ| = E

[∫ τ

0
F

(
St −Bt√

1− t

)
dt

]
+

1

2
, (*)

where F (x) = 4Φ(x)− 3.

Indeed, observe that

|τ − θ| = (τ − θ)+ + (τ − θ)− = (τ − θ)+ + θ − τ ∧ θ

=

∫ τ

0
I(θ 6 t)dt+ θ −

∫ τ

0
I(θ > t)dt

= θ +

∫ τ

0
(2I(θ 6 t)− 1)dt.
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Setting πt = P(θ 6 t | FB
t ) and taking E of the both sides of the

previous equation we get

E|τ − θ| = Eθ + E

∫ τ

0
(2I(θ 6 t)− 1)dt

=
1

2
+ E

∫ ∞
0

(2P(θ 6 t | FB
t )− 1)I(t 6 τ)dt

=
1

2
+ E

∫ τ

0
(2πt − 1)dt.

By stationary and independent increments of B we get

πt = P
(
St > max

t6s61
Bs | FB

t

)
= P

(
St −Bt > max

t6s61
Bs −Bt | FB

t

)
= P(z − x > S1−t)

∣∣
z=St,x=Bt

= 2Φ

(
St −Bt√

1− t

)
− 1.

Inserting this into the above formula, we get (∗).
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Step 2. To solve the optimal stopping problem

V = inf
τ∈M1

E

[∫ τ

0
F

(
St −Bt√

1− t

)
dt

]
+

1

2

we first note that the filtrations of the processes S−B and B coincide,
so we need to consider only stopping times τ of S −B.

According to the Lévy’s distributional theorem,

Law(S −B) = Law(|B|),

so we get an equivalent problem

V = inf
τ61

E

[∫ τ

0
F

(
|Bt|√
1− t

)
dt

]
+

1

2
,

where the supremum is taken over stopping times τ 6 1 of B.
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Step 3. To solve the above problem, we make use of a deterministic
change of time.

Introduce the process Z = (Zt)t>0 by

Zt = etB1−e−2t .

By Itô’s formula we find that Z solves the SDE

dZt = ztdt+
√

2dβt,

where the process β = (βt)06t61 is given by

βt =
1√
2

∫ t

0
esdB1−e−2s =

1√
2

∫ 1−e−2t

0

1√
1− s

dBs.

Observe that β is a continuous Gaussian martingale with zero mean and
variance equal to t, so according to Lévy’s characterization theorem,

β is a standard Brownian motion.
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Next we pass from the old time t to the new time s by the formula

t = 1− e−2s ⇐⇒ s = log(1/
√

1− t)

and we get

V = 2 inf
τ∈M

E

[∫ στ

0
e−2sF (|Zs|)ds

]
+

1

2
,

where στ = log(1/
√

1− τ) and στ is a stopping time w.r.t (FZ
s )s>0.

Thus, we need to solve the Markovian optimal stopping problem

W = inf
σ>0

E

[∫ σ

0
e−2sF (|Zs|)ds

]
for the diffusion process Z, which has the infinitesimal generator

LZ = z
d

dz
+

d2

dz2
.
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Step 4. Following the general theory, introduce the value function

W (z) = inf
σ>0

Ez

[∫ σ

0
e−2sF (|Zs|)ds

]
.

The function F (z) = 4Φ(z)− 3 is increasing for z > 0, which allows us
to guess that the optimal stopping time σ∗ should be of the form

σ∗ = inf{t > 0 : |Zt| > z∗},

where z∗ > 0 is a constant to be found.

In order to find z∗ we formulate the associated free-boundary problem:
(LZ − 2)W∗(z) = −F (|z|) for z ∈ (−z∗, z∗),
W∗(±z∗) = 0 (instantaneous stopping)

W ′∗(±z∗) = 0 (smooth fit).
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Inserting LZ , the first equation transforms to

W ′′∗ (z) + zW ′∗(z)− 2W∗(z) = −F (z) for z ∈ (−z∗, z∗).

The general solution of this equation is

W∗(z) = C1(1 + z2) + C2(zϕ(x) + (1 + z2)Φ(z)) + 2Φ(z)− 3
2 .

From the formulation of the optimal stopping problem, it is clear that
W∗ should be an even function, and hence W ′∗(0) = 0.

Using the conditions W∗(z∗) = W ′∗(z∗) = W ′∗(0) = 0 we find C1 =
Φ(z∗), C2 = −1 and z∗ is the unique root of the equation

4Φ(z)− 2zϕ(x)− 3 = 0.

Consequently,

W∗(z) = Φ(z∗)(1 + z2) +−zϕ(x) + (1− z2)Φ(z))− 3
2 , z ∈ [0, z∗].
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Step 5. Now we need to verify that the solution W∗(z) of the free-
boundary problem is equal to the value function W (z).

Observe that W∗(z) is C2 everywhere except at ±z∗ where it is C1. By
the Itô–Tanaka–Meyer formula we find

e−2tW∗(Zt) = W∗(Z0) +

∫ t

0
e−2s

(
LZW∗(Zs)− 2W∗(Zs)

)
ds

+
√

2

∫ t

0
e−2sW ′∗(Zs)dβs.

(**)

Using that LZW∗(z) − 2W∗(z) = −F (|z|) for z ∈ (−z∗, z∗), and
LZW∗(z)− 2W∗(z) = 0 > −F (|z|) for z 6∈ (−z∗, z∗), we get

e−2tW∗(Zt) >W∗(Z0)−
∫ t

0
e−2sF (|Zs|)ds+ Martt.

Since W∗(z) 6 0 for all z, applying the optional sampling theorem under
Pz, we get that W∗(z) 6W (z) for all z.
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Analyzing (∗∗) we also find that

0 = W∗(Z0)−
∫ σ∗

0
e−2sF (|Zs|)ds+ Martσ∗ .

Taking the expectation Ez, we get W∗(z) > W (z), which implies
W∗(z) = W (z) and completes the proof of the claim.

Transforming σ∗ back to the initial problem, we see that τ∗ is the optimal
stopping time for V .
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Distributional properties of τ ∗

Using that Law(S − B) = Law(|B|), we see that τ∗ is distributed as
the stopping time

τ̃ = inf{t > 0 : |Bt| = z∗
√

1− t}.

This implies

Eτ∗ = Eτ̃ = EB2
τ̃ = z2∗(1− Eτ̃) = z2∗(1− Eτ∗).

Solving this equation for Eτ∗ we find

Eτ∗ = z2∗/(1 + z2∗) = 0.55 . . .

Similarly, using that (B4
t − 6tB2

t + 4t2) is a martingale, we find

Eτ2∗ =
2z4∗

(1 + z2∗)
2(3 + 6z2∗ + z4∗)

= 0.36 . . . and Var τ∗ = 0.05 . . .
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A related problem: minimizing the distance “in space”

It is remarkable that the optimal stopping time τ∗ which minimizes the
distance in time E|τ − θ| also minimizes the distance in space:

E(Bτ∗ − S1)2 = inf
τ61

E(Bτ − S1)2, (***)

where St = max
s6t

Bs.

To prove (***), observe that S1 is a square-integrable functional of the
Brownian path on [0, 1]. By the Itô-Clark representation theorem,
there exists a unique FB

t -adapted process H = (Ht)t61 such that

S1 = ES1 +

∫ 1

0
HtdBt, and E

∫ 1

0
H2
t dt <∞.

Moreover, the following explicit formula is valid

Ht = 2

(
1− Φ

(
St −Bt√

1− t

))
.
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Define the square-integrable martingale M = (Mt)t>1:

Mt =

∫ t

0
HsdBs.

By the martingale property and the optional sampling theorem, obtain

E(Bτ − S1)2 = EB2
τ − 2E(BτM1) + ES2

1

= Eτ − 2E(BτMτ ) + 1 = E

(∫ τ

0
(1− 2Ht)dt

)
+ 1

for each τ ∈M.

Using the explicit formula for Ht we find

inf
τ∈M1

E(Bτ − S1)2 = inf
τ∈M1

E

[∫ τ

0
F

(
St −Bt√

1− t

)
dt

]
+ 1 = V +

1

2
,

hence the optimal stopping times in the both problems coincide.
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Remark 1: on Levý’s theorem and its generalization

The Levý’s theorem for a Brownian motion B = (Bt)t>0 states that

(supB −B, supB)
Law
= (|B|, L(B)),

where L(B) = (Lt(B))t>0 is the local time of B at zero:

Lt(B) = lim
ε↓0

1

2ε

∫ t

0
I(|Bs| 6 ε)ds, t > 0, (lim exists a.s.)

Graversen & Shiryaev (2000) showed that the following generalisation
holds for a Brownian motion with drift Bµ

(supBµ −Bµ, supBµ)
Law
= (|Xµ|, L(Xµ)),

where Xµ = (Xµ
t )t>0 is the bang-bang process

dXµ
t = −µ sgnXµ

t dt+ dBt, Xµ
0 = 0,

and L(Xµ) is defined in the same way as L(B).
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Remark 2: on the Itô-Clark theorem for Bµ

Let B be a standard Brownian motion, and FB
1 = σ(Bt; t 6 1). Sup-

pose ξ is an FB
1 -measurable square-integrable random variable.

The Itô-Clark theorem states that there exists a unique predictable
process H = (Ht)t61 such that E

∫ 1
0 H

2ds <∞ and

ξ = Eξ +

∫ 1

0
HsdBs.

In general, it is very difficult to find the process H explicitly.

However, let us show that for ξ = Sµ1 ≡ max
t61

Bµ
t we have

Hµ
t = 1− Φ

(
(Sµt −B

µ
t )− µ(1− t)√
1− t

)
+ e2µ(S

µ
t −B

µ
t )Φ

(
−(Sµt −B

µ
t )− µ(1− t)√
1− t

)
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1o. Using that Bµ has stationary independent increments, we get

E(Sµ1 | Ft) = Sµt + E
[(

sup
t6s61

Bµ
s − S

µ
t

)+
| Ft

]
= Sµt + E

[(
sup
t6s61

(Bµ
s −B

µ
t )− (Sµt −B

µ
t )
)+
| Ft

]
= Sµt + E(Sµ1−t − (z − x))+

∣∣
z=Sµt ,x=B

µ
t
.

Using the formula E(X − c)+ =
∫∞
c P(x > z)dz, we get

E(Sµ1 | Ft) = Sµt +

∫ ∞
Sµt −B

µ
t

(1− Fµ1−t(z))dx := f(t, Bµ
t , S

µ
t ),

where Fµ1−t(z) = P(Sµ1−t 6 z).
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2o. Applying the Itô formula to the right-hand side of the previous equa-
tion and using that the left-hand side defines a continuous martingale,
we get

E(Sµ1 | Ft) = ESµ1 +

∫ t

0

∂f

∂x
(s,Bµ

s , S
µ
s )dBs

= ESµ1 +

∫ t

0
(1− Fµ1−t(S

µ
s −Bµ

s ))dBs

as a nontrivial continuous martingale cannot have paths of bounded
variation.

3o. Finally, we use the well-known formula

Fµ1−t(z) := P(Sµ1−t 6 z)

= Φ

(
z − µ(1− t)√

1− t

)
− e2µzϕ

(
−z − µ(1− t)√

1− t

)
.

which gives the sought-for representation for Hµ.
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The case µ 6= 0

We consider only the problem of minimizing the distance in space:

Ṽ µ = inf
τ∈M1

E(Bµ
τ − S

µ
1 )2,

where
Bµ
t = µt+Bt, St = max

s6t
Bµ
s .

The problem is not standard, so first we reduce it to a standard one.

Lemma. For any τ ∈M1 the following identity holds:

E
[
(Sµ1 −B

µ
t )2 | FB

τ ) = (Sµτ −Bτ )2 + 2

∫ ∞
Sµτ−Bµτ

z(1− Fµ1−τ (z))dz,

where

Fµ1−t(z) = P(Sµ1−t 6 z) = Φ

(
z − µ(1− t)√

1− t

)
−e2µzΦ

(
−z − µ(1− t)√

1− t

)
.
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The process Sµt −B
µ
t is Markov, and in order to apply the general theory

we let it start from an arbitrary point (t, x) by introducing the process

Xx
t+s = x ∨ Sµs −Bµ

s

Then we get the Markovian optimal stopping problem

V (t, x) = inf
06τ61−t

Et,xG(t+ τ,Xx
t+τ ),

where G is given by

G(t, x) = x2 + 2

∫ ∞
x

zR(t, z)dz, R(t, z) = 1− Fµ1−t(z).

There is no closed-form analytical solution of this problem. However, the
optimal stopping boundaries can be found numerically from a system of
integral equation. For details, see Peskir, Shiryaev, Optimal Stopping
and Free-Boundary problems, sec. 30.
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In fact, for µ > 0 the optimal stopping time is given by

τ∗ = inf{0 6 t 6 T : Sµt −B
µ
t ∈ [b1(t), b2(t)]}

and for µ < 0 the optimal stopping time is given by

τ∗ = inf{0 6 t 6 T : Sµt −B
µ
t > b1(t)},

where b1(t) and b2(t) are some functions (dependent on µ) that can be
found by solving a system of non-linear integral equations.

Next we present the qualitative structure of the stopping and the con-
tinuation sets.
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3. Trading rule “Buy and Hold”

In this section we consider another optimality criterion when one wants
to sell stock until a time T > 0.

Suppose the (discounted) stock price is described by a geometric Brow-
nian motion

dXt = aXtdt+ σXtdBt ⇐⇒ Xt = X0 exp((a− σ2

2 )t+ σBt).

and put
Mt = sup

s6t
Xs.

We consider the following optimal stopping problem:

W = sup
τ∈MT

E
Xτ

MT
,

which means that a trader wants to maximize the average percentage
of the maximum possible gain.
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This problem is particularly interesting, because it is equivalent to the
maximization of the relative error between the selling price and the
maximum price:

E

[
MT −Xτ

MT

]
→ max .

As it was noted in the previous section, criteria of this type have clear
meaning, unlike the standard approach of maximizing expected utility.
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A simpler case: maximizing the logarithmic rate

Before we proceed to the solution of the above problem, let us consider
a simpler problem

R = sup
τ∈MT

E

[
log

(
Xτ

MT

)]
.

Clearly,
R = sup

τ∈MT

E[(a− σ2/2)τ + σBτ − logMT ]

and the optimal stopping time is given by

τ∗ =


T, a > σ2/2,

any time in [0, T ], a = σ2/2,

0, a < σ2/2,

where we use that EBτ = 0, and EMT does not depend on τ .
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It will be convenient to introduce the goodness index of the stock

α =
a

σ2
.

Then the optimal stopping time is

τ∗ =


T, α > 1/2,

any time in [0, T ], α = 1/2,

0, α < 1/2.

Remark. In the undiscounted case, the goodness index is given by

α̃ =
ã− r
σ2

.

where ã is the drift coefficient of the undiscounted price, and r is the
discounting rate.
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Solution of the main problem

Remarkably, the same deterministic stopping time is optimal in the
original problem

W = sup
τ∈MT

E

[
Xτ

MT

]
,

Theorem. 1) If α < 0, then τ∗ = 0 is the unique optimal stopping
time for W and the optimal relative error is given by

W (α, σ) = 1− 2α− 1

2(α− 1)
Φ
[
−(α− 1/2)σ

√
T
]

− 2α− 3

2(α− 1)
e(1−α)σ

2TΦ
[
(α− 3/2)σ

√
T
]
.
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Theorem (cont.). 2) If α > 1/2 then τ∗ = T is the unique optimal
stopping time for W when α > 1/2, and both τ∗ = 0 and τ∗ = T are
optimal when α = 1/2. The optimal relative error is given by

W (α, σ) = 1−
(

1− 1

2α

)
Φ
[
(α− 1/2)σ

√
T
]

−
(

1 +
1

2α

)
eασ

2TΦ
[
−(α+ 1/2)σ

√
T
]
.

Moreover, W (α, σ) decreases in α and increases in σ and

0 6W (α, σ) <
1

2α
for any α > 1/2, σ > 0.

Remark. As in the original paper by Shiryaev, Xu, Zhou, we omit the
case α ∈ (0, 1/2), which can be solved by the PDE approach, in favor
of the probabilistic approach that will be used.

The answer for the case α < 1/2 is τ∗ = 0.
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Discussion of the result

1. When the stock goodness index α > 1/2, one should hold on to the
stock, i. e. the stock is good one. The better the stock (as measured
by α) the smaller the relative error.

In particular, the error diminishes to zero when α → ∞, so the buy-
and-hold rule almost realizes selling at the maximum price if the stock
is sufficiently good.

2. If α < 1/2, one should sell the stock immediately. This is bad stock
the investor ought to get rid of as soon as possible.

3. The buy-and-hold rule is insensitive to the stock parameters as the
definition of good and bad stocks involves a range of the parameters,
instead of specific values for them.
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Proof of the theorem

Using the self-similarity property of B, we can assume σ = 1.

Observe that

W = sup
τ6T

E

[
eB

µ
τ

eS
µ
T

]
,

where

Bµ
t = µt+Bt, Sµt = sup

s6t
Bµ
s , where µ = a− σ2/2.

This is a non-standard optimal stopping problem, so we reduce it to a
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standard one:

E
[
eB

µ
τ /eS

µ
T
]

= E
[
min

{
e−(S

µ
τ−Bµτ ), e

− max
τ6t6T

(Bµt −B
µ
τ )
}]

= E
[
E
[
min

{
e−(S

µ
τ−Bµτ ), e

− max
τ6t6T

(Bµt −B
µ
τ )
}∣∣∣Ft

]]
= E

[
E
[
min

{
e−x, e−S

µ
T−t
}] ∣∣∣

x=Sµτ−Bµτ

]
= E[G(τ, Sµτ −Bµ

τ )],
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where
G(t, x) := E

[
min

{
e−x, e−S

µ
T−t
}]
> 0.

Direct computations show that for µ 6= 1/2

G(t, x) = 2(µ−1)
2µ−1 e

−(µ−1/2)(T−t)Φ
(
−x+(µ−1)(T−t)√

T−t

)
+ 1

2µ−1e
−(1−2µ)xΦ

(
−x−µ(T−t)√

T−t

)
+ e−xΦ

(
x−µ(T−t)√

T−t

)
and for µ = 1/2

G(t, x) = [1 + x+ (T − t)/2)]Φ
(
−x−(T−t)/2√

T−t

)
−
√

T−t
2π e

−(x+(T−t)/2)2/(2(T−t)) + e−xΦ
(
x−µ(T−t)/2√

T−t

)
.

Thus we need to solve the standard problem

W = sup
τ∈MT

EG(τ,Xτ ), where Xt = Sµt −B
µ
t .
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Introduce the value function, letting the process X start from an ar-
bitrary point (t, x):

W (t, x) = sup
τ6T−t

EG(t+ τ,Xx
τ ), 0 6 t 6 T, x > 0.

where Xx
t = x ∨ Sµt −B

µ
t .

We know that the optimal stopping time is the first entry time to the
stopping set D:

D = {(t, x) : W (t, x) = G(t, x)}, τ∗ = inf{t > 0 : (t,Xt) ∈ D}.

Thus, in order to solve the problem, we need to analyze the structure
of the functions W and G.

Next we consider two cases, which differ in the methods used:

1. α > 1 or α 6 0,

2. 1/2 6 α < 1.
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Case 1: α > 1 or α 6 0

Observe that Law(Xx) = Law(|Y |), where Y = (Yt)t>0 is the bang-
bang process

dYt = −µ sgn(Yt)dt+ dB̃t, Y0 = x,

with a Brownian motion B̃ (may be different from B).

By the Itô-Tanaka formula we obtain

G(t+ s, |Ys|) = G(t, x) +
∫ s
0 LYG(t+ u, |Yu|)du

+
∫ s
0 G
′
x(t+ u, |Yu|) sgn(Yu)dB̃u

+
∫ s
0 G
′
x(t+ u, |Yu|)dLu(Y )

= G(t, x) +
∫ s
0 H(t+ u, |Yu|)du+ms,

where we used that G′x(t, 0+) = 0 and H(t, x) and ms are defined by
. . .
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H(t, x) := LYG(t, x) ≡ G′t(t, x)− µG′x(t, x) +
1

2
G′′xx(t, x)

ms =

∫ s

0
G′x(t+ u, |Yu|) sgn(Yu)dB̃u.

One can show that −1 6 G′x 6 0, so ms is a martingale, which implies

W (t, x) = G(t, x) + sup
τ6T−t

E

[∫ τ

0
H(t+ u,Xx

u)du

]
. (*)

Then, a lengthy calculation shows that

H(t, x) = (µ− 1/2)G(t, x)−G′x(t, x).

If µ > 1/2 ⇔ α > 1, then H(t, x) > 0 since G′x(t, x) 6 0 by the
monotonicity of G in x, and the inequality is strict if α > 1.

This proves that τ∗ = T − t is optimal in (∗), and hence, τ∗ = T is
optimal in the original problem.
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In the case µ 6 −1/2⇔ α 6 0 observe that

exG(t, x) = exE
[
min

{
e−x, e−S

µ
T−t
}]

= E
[
min

{
1, e−S

µ
T−t+x

}]
is strictly increasing w.r.t x, so

∂(exG(t, x))

∂x
> 0, or G′x(t, x) +G(t, x) > 0.

Thus

H(t, x) = (µ− 1/2)G(t, x)−G′x(t, x)

= (µ+ 1/2)G(t, x)− (G(t, x) +G′x(t, x)) < 0.

The inequality H(t, x) < 0 implies τ∗ = 0 is the optimal stopping time.
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Case 2: 1/2 6 α < 1

The direct approach of case 1 does not work in case 2, and we provide
another solution (which, in fact, applies also for α > 1).

Lemma. If α > 1/2 then

W (t, x) > G(t, x), t ∈ [0, T ), x > 0.

If α = 1/2 then

W (t, x) > G(t, x), t ∈ [0, T ), x > 0.

Observe that directly from this lemma it follows that τ∗ = T is optimal
for α > 1/2 by the definition of the stopping set D = {(t, x) : W (t, x) =
G(t, x)}.

The case α = 1/2 requires some additional reasoning, and will not be
covered in the lectures – for details see the paper of Shiryaev et al.
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Overview of proof. Note that a > 1/2 is equivalent to µ > 0, and we
assume σ = 1.

First, using the explicit formula for G(t, x) provided above, one can
show that in the case µ = 0 we have

EG(T,Xx
T ) > G(0, x) for x > 0, EG(T,X0

T ) = G(0, 0).

This implies that W (t, x) > G(t, x) whenever α = 1/2, x > 0 proving
the second statement of the lemma.

Next, for µ > 0 applying Girsanov’s theorem we have

EG(T,Xα
T )−G(0, x) = E

[
e−x∨ST (eBT − 1)e−µ

2T/2+µBT
]

Then

∂

∂µ

(
eµ

2T/2
{

EG(T,Xx
T )−G(0, x)

})
= E

[
e−x∨ST (eBT − 1)BT e

µBT
]
> 0, µ > 0,

which, together with the second statement, implies the first one.
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Remark. Let B = (Bt)t>0 be a standard Brownian motion and Bµ
t =

Bt + µt be a Brownian motion with drift µ.

Recall that the Girsanov theorem implies that for any measurable
“good” functional Gt(x) (e. g. non-negative or bounded) it holds that

EGt(B
µ) = EeµBt−µ

2t/2Gt(B).
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Thus, we have proved that τ∗ = T is optimal if α > 1/2 and τ∗ = 0 is
optimal if α < 0.

We also need to find the relative errors

W ∗(α, σ) = E [Xτ∗/MT ] .

Since the optimal stopping time is deterministic, W ∗ can be found
using the explicit formula for the joint density of (Xt,Mt):

P(Xt ∈ dx,Mt ∈ dm) =
2

σ3
√

2πt3
log(m2/s)

xm

× exp
(
− log2(m2/x)

2σ2t
+
β

σ
log(x)− 1

2
β2t
)
,

where β = a/σ − σ/2 (see Karatzas & Shreve (1991), p. 368).

Details of the derivation of the formulas for W ∗ are in the paper by
Shiryaev et al.
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Some extensions

1. In the case α ∈ (0, 1/2) the optimal stopping time is is τ∗ = 0.

2. J. du Toit & G. Peskir (2009) considered also the problem

E(MT /Xτ )→ min

and it turned out that the solution is not deterministic if α ∈ (0, 1),
but deterministic in other cases.
For α ∈ (0, 1) it can be represented as the first hitting time of Mt/Zt
to a boundary characterized by some integral equation.

3. K. Ano & R. V. Ivanov (2012) generalized the result to α-stable
Levý processes, and found that the optimal stopping time is τ∗ = 0
or τ∗ = T .
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Applications to real data

1. Shiryaev, Xu, Zhou. Thou shalt buy and hold, 2008.

The original paper provides an example of applying the buy-and-hold
rule to the S&P500 index fund based on the data for 1889–1978.

The parameters (estimated by annual data) are a = 6.18%, σ =
16.67%, α = 2.2239 > 0.5.

If one takes T = 1 (year), then W ∗(α, σ) = 10.15%, i. e. if you buy
and hold the S&P500 index fund for 1 year, you can expect to achieve
almost 90% of the maximum possible return.

2. Hui, Yam, Chen. Shiryaev-Zhou index – a noble approach to bench-
marking and analysis of real estate stocks, 2012.

This paper applies the buy-and-hold rule to real estate stock in Hong
Kong.
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4. Sequential hypothesis testing

Development of sequential methods of mathematical statistics started
in the 1940s and was largely influenced by the book of A. Wald “Se-
quential analysis” (1947).

In contrast to classical statistical methods, where sample size is fixed,
in sequential methods one can choose the sample size depending on
observed data.

Typically, this opportunity leads to a smaller average sample size, while
maintaining the same probabilities of errors.
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We consider two models of observable processes (Xt)t>0, which are
generated by a Brownian motion (Bt)t>0.

Model A: (related to the problem of hypotheses testing and estimation)

Xt = µt+Bt or, equivalently, dXt = µdt+ dBt,

where µ is an unknown parameter.

Model B: (related to the problem of detecting a disorder)

Xt = µ(t− θ)+ +Bt or dXt =

{
dBt, t < θ,

µdt+ dBt, t > θ,

where µ is a known parameter, but θ is unknown.
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Hypotheses testing for a Brownian motion

Let B = (Bt)t>0 be a Brownian motion on a probability space
(Ω,F ,P). Suppose we sequentially observe the process X = (Xt)t>0

Xt = µt+Bt,

where µ = µ0 or µ = µ1 is the unknown drift coefficient.

A decision rule for testing the hypotheses H0 : µ = µ0 and H1 : µ = µ1
is a pair (τ, d), where

τ is a stopping time of the filtration (FX
t )t>0, FX

t = σ(Xs; s 6 t);

d is an Fτ -measurable function taking values {µ0, µ1}.

The time τ is interpreted as the moment of stopping the observation,
and d corresponds to the hypothesis accepted at time τ .

Generally, we want to find decision rules with a small observation time
and a small rate of wrong decisions.
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The Bayesian sequential testing problem

Suppose that µ is a random variable independent of B and taking
values µ1, µ0 with probabilities π, 1− π.

The Bayesian sequential testing problem of H1 and H2 consists in
finding the decision rule (τ∗, d∗) which minimizes (over all decision rules)
the Bayesian risk

R(τ, d) = aP(d = µ0, µ = µ1) + bP(d = µ1, µ = µ0) + cEτ,

where a, b, c > 0 are given numbers: a, b are interpreted as penalties for
wrong decisions, and c as observation cost.
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The conditionally-extremal problem (Wald’s problem)

Suppose µ is an unknown real number.

Let ∆(α, β) denote the class of all decision rules with the probabilities
of errors not exceeding α and β respectively:

(τ, d) ∈ ∆(α, β) ⇔ P(d = µ0 | µ = µ1) 6 α, P(d = µ1 | µ = µ0) 6 β.

The conditionally-extremal sequential testing problem of H1, H2

consists in finding (τ∗, d∗) ∈ ∆(α, β) such that

E0τ∗ 6 E0τ, E1τ∗ 6 E1τ for any (τ, d) ∈ ∆(α, β),

where E0 = E[ · | µ = µ0], E1 = E[ · | µ = µ0].

In other words, we look for a decision rule with the minimal average
observation time among all decision rules with given error probabilities.
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Solution of the Bayesian problem

Without loss of generality, we will assume c = 1, µ0 = 0, µ1 = m > 0.

We have the problem

V (π) = inf
(τ,d)

Eπ[aI(d = 0, µ = m) + bI(d = m,µ = 0) + τ ],

where Eπ emphasises the prior distribution of µ (i. e. P(µ = m) = π).

Introduce the a posteriori probability process π = (πt)t>0:

πt = P(µ = m | FX
t ).

Then we for any stopping time τ

EπI(d = 0, µ = m) = E
[
E(I(d = 0)I(µ = m) | FX

τ )
]

= E[πτI(d = 0)],

since I(d = 0) is an Fτ -measurable function.
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In the same way EπI(d = m,µ = 0) = E[(1− πτ )I(d = m)], so

V (π) = inf
(τ,d)

Eπ[τ + aπτI(d = 0) + b(1− πτ )I(d = m)].

Then for any decision rule (τ, d) the rule (τ, d′) with

d′ =

{
0, if aπτ 6 b(1− πτ ) ⇔ πτ 6 b/(a+ b),

m, if aπτ > b(1− πτ ) ⇔ πτ > b/(a+ b),

will be not worse (in terms of the Bayesian risk) than (τ, d).

Thus the optimal decision rule (τ∗, d∗) should be such that τ∗ solves
the optimal stopping problem

V (π) = inf
τ

Eπ[τ + aπτ ∧ b(1− πτ )],

and d∗ is given by the above formula.
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Introduce the likelihood process ϕ = (ϕt)t>0

ϕt =
dP1

t

dP0
t

(ω), where Pit = Pi | FX
t .

It is well-known that ϕt = exp
(
mXt − m2

2 t
)
.

As follows from the general Bayes formula (see Liptser, Shiryaev,
Statistics of Random Processes, ch. 7, § 9),

πt = π
dP1

t

d[πP1
t + (1− π)P0

t ]
,

and therefore

πt =
π

1−πϕt

1 + π
1−πϕt

.

Applying the Itô formula, we obtain that πt satisfies the SDE

dπt = −m2(1− πt)dt+mπt(1− πt)dXt, π0 = π.
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According to the innovation representation, the process

B̃t = Xt −
∫ t

0
Eπ[µ | FX

s ]ds

is a Brownian motion (this can be established by checking that B̃t
is a continuous square-integrable martingale such that EB̃t = 0, and
E(B̃t − B̃s)2 | Fs) = t− s for t > s).

Since Eπ[µ | FX
s ] = mπs, we get that X is a diffusion process with

the stochastic differential

dXt = mπtdt+ dB̃t.

This representation implies that

dπt = mπt(1− πt)dB̃t, π0 = π.
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Thus, we have to solve the optimal stopping problem

V (π) = Eπ[τ +G(πτ )], G(π) = aπ ∧ b(1− π).

Due to the nature of the problem it is reasonable to assume that the
continuation set is an interval

C = {π : π ∈ (A,B)}

for some 0 6 A 6 b/(a+ b) 6 B 6 1.

This assumptions suggests that we should look for V (π), A,B as a
solution of the free-boundary problem

LπV = −1 for π ∈ (A,B),

V = G for π 6∈ (A,B),

V ′(A) = a, V ′(B) = B

where Lπ = m2

2 π
2(1− π)2 ∂2

∂π2 .
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Introduce the function

ψ(π) = (1− 2π) log
( π

1− π

)
.

We can find that the solution of the differential equation with the bound-
ary conditions V (A) = aA, V ′(A) = a for a fixed 0 < A < b/(a+ b) is
given by

V (π;A) =
2

m2
(ψ(π)− ψ(A)) +

(
a− 2

m2
ψ′(A)

)
(π −A) + aA

for π > A. Choosing A and B in a such way that the conditions
V (B) = b(1− π), V ′(b) = b are satisfied, we obtain

V∗(π) =


2
m2 (ψ(π)− ψ(A)) +

(
a− 2

m2ψ
′(A)

)
(π −A) + aA

if π ∈ (A∗, B∗)

aπ ∧ b(1− π) if π ∈ [0, A∗] ∪ [B∗, 1].

where A∗ and B∗ form the unique solution of the equations

V (B∗;A∗) = b(1−B∗), V ′(B∗;A∗) = −b.
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Now we need to verify that V∗(π) coincides with the value function
V (π) in the optimal stopping problem.

It is clear that in the optimal stopping problem we only need to consider
stopping times τ with Eτ <∞. Then we have

V (π) = inf
τ

Eπ[τ+G(πτ )] > inf
τ

Eπ[τ+V∗(πτ )]+inf
τ

Eπ[G(πτ )−V∗(πτ )].

If π ∈ (A∗, B∗), using that LπV∗ = −1, for any τ , Eτ <∞, we get

EπV∗(πτ )− V∗(π) = −Eπτ ⇐⇒ Eπ[τ + V∗(πτ )] = V∗(π).

Using that G(π) > V∗(π) for any π ∈ [0, 1] we obtain

inf
τ

Eπ[G(πτ )− V∗(πτ )] > 0,

and finally

V (π) > inf
τ

Eπ[τ + V∗(πτ )] =⇒ V (π) > V∗(π).
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By direct computations, we find that for any π ∈ [0, 1] the stopping
time

τ∗ = inf{t > 0 : πt 6∈ (A∗, B∗)}

has the finite expectation Eπτ∗. Moreover,

Eπ[τ∗ +G(πτ∗)] = Eπ[τ∗ + V∗(πτ∗)] = V∗(π).

This implies that

V (π) > V∗(π) = Eπ[τ∗ +G(πτ∗)].

However, since V (π) 6 Eπ[τ∗ + G(πτ∗)] by the definition of the value
function, we get

V = V∗ and τ∗ is the optimal stopping time.
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Thus we have proved the following theorem.

Theorem. The optimal decision rule in the sequential testing prob-
lem of H0 and H1 is (τ∗, d∗) with

τ∗ = inf{t > 0 : πt 6∈ (A∗, B∗)}, d =

{
0, πτ 6 b/(a+ b),

m, πτ > b/(a+ b),

where the constants A∗, B∗ are the unique solution of the equations

V (B∗;A∗) = b(1−B∗), V ′(B∗;A∗) = −b,

for the function

V (π;A) =
2

m2
(ψ(π)− ψ(A)) +

(
a− 2

m2
ψ′(A)

)
(π −A) + aA.
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Remark: the symmetric case

Suppose we test the hypotheses H+ : µ = m, H− : µ = −m for m > 0
and a = b > 0, c = 1.

In this case, using the explicit formula for πt through Xt we obtain the
optimal decision rule (τ∗, d∗) with

τ∗ = inf{t > 0 : Xt 6∈ (−Ã∗, Ã∗)}, d = m sgn(Xτ∗),

where

Ã∗ = 2m

(
log

A∗
1−A∗

− log
π

1− π

)
,

for the constant A∗ being the unique solution of the equation

2am2 =
1−A∗
A∗

− A∗
1−A∗

+ 2 log
1−A∗
A∗

.

(If Ã∗ > 0, we set τ∗ = 0.)
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Solution of Wald’s problem

We look for a decision rule (τ∗, d∗) ∈ ∆(α, β) such that

E1τ∗ 6 E0τ, E0τ∗ 6 E0τ for any (τ, d) ∈ ∆(α, β).

assuming µ1 = m > 0, µ0 = −m, α + β < 1. Recall that (τ, d) ∈
∆(α, β) if P1(d = −m) 6 α, P0(d = m) 6 β.

Theorem. The optimal decision rule (τ∗, d∗) is given by

τ∗ = inf{t > 0 : ϕt 6∈ (A∗, B∗)}, d∗ =

{
m, ϕτ∗ > B∗,

−m, ϕτ∗ 6 A∗,

where

ϕt = exp
(
2mXt − m2

2 t
)
, A∗ = α/(1− β), B∗ = (1− α)/β.

The average observation times

E0τ∗ = w(β, α)/(2m2), E1τ∗ = w(α, β)/(2m2),

where w(x, y) = (1− x) log 1−x
y + x log x

1−y .
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Proof

We solve Wald’s problem by reducing it to the Bayesian problem.

For simplicity we consider only the case α = β(< 1/2).

Consider the Bayesian problem with a parameter a:

V (π; a) = inf
(τ,d)

Eπ[τ + aI(d 6= µ)].

The optimal decision rule here is of the form

τ∗ = inf{t > 0 : Xt 6∈ (−A∗, A∗)}, d∗ = m sgn(Xτ∗),

where A∗ = Ã∗(π; a). Moreover, for any A∗ > 0, π ∈ (0, 1) it is
possible to find a > 0 such that Ã∗(π; a) = A∗.

80/145



Take A∗ > 0 such that for τ∗ = τ∗(A∗), d∗ = d∗(A∗) we have

P1(d∗ = −m) = P0(d∗ = m) = α.

Then for any π ∈ (0, 1) there exist a = a(π) such that the optimal
stopping rule τ∗(π; a) = τ∗(A∗).

Using that for any decision rule (τ, d), any π ∈ (0, 1), a > 0 we have

Eπ[τ + aI(d 6= µ)]

= πE1τ + (1− π)E0τ + a
[
πP1(d = −m) + (1− π)P0(d = m)

]
,

we obtain that for any (τ, d) ∈ ∆(α, β) and π ∈ (0, 1)

πE1τ∗ + (1− π)E0τ∗ 6 πE1τ + (1− π)E0τ,

where τ∗ = τ∗(π, a(π)) = τ∗(A∗).

Since π ∈ (0, 1) is arbitrary, (τ∗, d∗) solves the Wald problem.
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5. Sequential parameters estimation

In this part we consider the sequential estimation problem for an un-
known drift coefficient of a Brownian motion.

We observe a random process X = (Xt)t>0

Xt = µt+Bt,

where µ is a random parameter independent of a Brownian motion B.

A decision rule for estimating µ is a pair (τ, d), where

τ is a stopping time of the filtration (FX
t )t>0, FX

t = σ(Xs; s 6 t);

d is an Fτ -measurable function with values in R.

Generally, we want τ to be small, and d to be close to µ.
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Bayesian risk and reduction to an optimal stopping problem

We consider the Bayesian risk given by

R = inf
(τ,d)

E[cτ +W (µ, d)],

where E is the expectation w.r.t the measure generated by the indepen-
dent µ and B, and W is a penalty function; Eτ <∞.

Due to the representation

E[cτ +W (µ, d)] = E
{

E
[
cτ +W (µ, d) | FX

τ

]}
and the measurability of τ and d w.r.t FX

τ , we need to find

E
[
W (µ, d) | FX

τ

]
.
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The conditional distribution of µ is given by

P
(
µ 6 y | FX

t

)
=

y∫
−∞

dP(Xt
0 |µ = z)

dP(Xt
0 |µ = 0)

dPµ(z)

∞∫
−∞

dP(Xt
0 |µ = z)

dP(Xt
0 |µ = 0)

dPµ(z)

,

with the Radon–Nikodym derivative

dP(Xt
0 |µ = z)

dP(Xt
0 |µ = 0)

of the measure of the process Xt
0 = (Xs, s 6 t) with the parameter

µ = z w.r.t the measure of the process Xt
0 = (Xs, s 6 t) with µ = 0.
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Evaluating the Radon–Nikodym derivative, we obtain

P
(
µ 6 y | FX

t

)
=

y∫
−∞

ezXt−z
2t/2dPµ(z)

∞∫
−∞

ezXt−z2t/2dPµ(z)

.

If Pµ(z) has density, dPµ(z) = p(z)dz, then the conditional density
of µ can be represented in the form

p(y,Xt; t) :=
dP (µ 6 y |FX

t )

dy
=

eyXt−y
2t/2p(y)

∞∫
−∞

ezXt−z2t/2p(z)dz

.
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Thus, for d = d(τ) we find

E[W (µ, d) |FX
τ ] =

∫
R
W (y, d(τ)) · p(y,Xτ , τ)dy.

If for any τ there exists FX
τ -measurable function d∗(τ) such that

inf
d∈FX

τ

∫
R
W (y, d) · p(y,Xτ ; τ)dy =

=

∫
R
W (y, d∗(τ)) · p(y,Xτ ; τ)dy (≡ G(τ,Xτ )) ,

then the following equation holds (with the notation p = Law µ)

inf
(τ,d)

E[cτ +W (µ, d)] = inf
τ

E[cτ +G(τ,Xτ )] (≡ V (p)).

and if τ∗ is the optimal stopping time in the right-hand side, then
(τ∗, d∗(τ∗)) is the optimal decision rule.
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Example 1: the mean-square criterion

W (µ, d) = (µ− d)2 and µ ∼ N(m,σ2)

In this case

V (p) = inf
τ

E[cτ + v(τ)], where v(t) = 1/(t+ σ2).

The optimal time τ∗ is deterministic:

(a) if
√
c < σ2, then τ∗ is the unique root of the equation

V (τ∗) =
√
c ⇐⇒ τ∗ = c−1/2 − σ−2;

(b) if
√
c > σ2, then τ∗ = 0;

The optimal d∗ is the a posteriori mean E(µ |FX
τ∗):

(c) d∗ =

{√
cXτ∗ +m

√
c/σ2, if

√
c < σ2,

m, if
√
c > σ2.
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Let us show how to obtain the representation

V (p) = inf
τ

E[cτ + v(τ)] for v(t) = 1/(t+ σ2).

Consider
inf
(τ,d)

E[cτ + (µ− d)2].

For a given τ , the optimal d∗ = d∗(τ) is the conditional mean of µ

d∗(τ) = E(µ | FXτ ) =

∫
R
y · p(y,Xτ ; τ)dy,

and E[(µ− d∗)2 | FX
τ ] is the conditional variance of µ.
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If µ ∼ N (m,σ2), the conditional variance

E
(
µ− d∗t | FX

t

)
= v(t),

where v(t) solves the Ricatti equation (the Kalman-Bucy filter)

v′(t) = −v2(t), v(0) = σ2.

Its solution is given by

v(t) =
1

t+ σ−2
.

As a result,

V (p) = inf
τ

E

[
cτ +

1

t+ σ−2

]
,

which proves statements (a) and (b) for τ∗.
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Representation (c) for d∗ = E(µ |FX
τ∗) follows from the formula

d∗τ∗ =

∫
R
yp(y,Xτ∗ ; τ∗)dy

= Xτ∗v(τ∗) +m exp

(
−
∫ τ∗

0
v(s)ds

)
=

= Xτ∗
σ2

1 + σ2τ∗
+

m

1 + σ2τ∗
,

which implies

d∗ =

{√
cXτ∗ +m

√
c/σ2, if

√
c < σ2 (τ∗ = c−1/2 − σ−2),

m, if
√
c > σ2 (τ∗ = 0).
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Example 2: exact estimation

Let δµ be the Dirac function and consider the penalty function

W (µ, ·) = −δµ(·).

In this case ∫
R
W (y, d)p(τ,Xτ , y)dy = −p(τ,Xτ , d),

which means that d∗(τ) is the mode of the conditional density
p(τ,Xτ , ·) (i.e. a maximum of p(τ,Xτ , ·)).
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In the normal case µ ∼ N (m,σ2) the mode coincides with the condi-
tional mean (see Example 1):

d∗(τ∗) =

{√
cXτ∗ +m

√
c/σ2, if

√
c < σ2 (τ∗ = c−1/2 − σ−2),

m, if
√
c > σ2 (τ∗ = 0).

Therefore

G(τ,Xτ ) = −p(τ,Xτ ; d∗(τ)) = − 1

v(τ)
√

2π
.

It remains to find τ∗ = t∗ which minimizes cτ −
(
v(τ)
√

2π
)−1

:

t∗ =

{
1/(8πc2)− 1/(σ2), if 8πc2 < σ2,

0, if 8πc2 > σ2.

The corresponding function d∗ is given by

d∗ = v(τ∗)Xτ∗ +m
v(τ∗)

σ2
= 8πc2Xτ∗ +m

8πc2

σ2
.
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Remark

It would be interesting to consider problems, where µ belongs to a finite
segment [µ1, µ2], e.g. with a uniform distribution.

In this case the optimal stopping time τ∗ will not be deterministic.
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6. Sequential disorder detection

Generally speaking, a moment of disorder (another name – a change-
point) of a stochastic process is a moment of time when its probabilistic
structure changes.

We consider problems of detecting the disorder, when the moment of
disorder is not observed directly, but shows up though changes in the
behaviour of an observable process.

We will study sequential methods, when data arrives continuously and
the aim is to stop the observation as soon as a disorder occurs, but not
earlier.

The general disorder detection theory for discrete time was presented
in the first part of the course. In this part we consider one particular
discrete-time problem, and then study the case of continuous time.
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One possible application of disorder detection methods can be found in
question of portfolio re-balancing.

For example, if stock price is described by a geometric Brownian motion
dXt = µXtdt+ σXtdBt, then we found earlier that the decision when
to sell the stock depends on the ratio µ/σ2, which, we assumed, stays
constant.

But suppose that

µ/σ2 may change during the time segment [0, T ].

When is it optimal to sell the stock in this case? — We need to develop
a model of changing parameters and to find out how to detect changes.

Next we consider one discrete-time problem, and then consider the gen-
eral theory for continuous time.
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Random walk model of stock prices

Let S0, S1, S2, . . . be a random sequence representing the prices of stock
at the moments of time t = 0, 1, 2, . . ..

Assume that the log-returns are normally distributed:

log
St
St−1

= µ+ σξt ⇐⇒ St = S0 exp
(
µt+ σ

t∑
t=1
ξt

)
,

where ξt ∼ N (0, 1) is a sequence of independent random variables, and
σ > 0, µ ∈ R are known volatility and drift coefficients.

Suppose one wants to sell the stock at a time τ 6 T maximizing the
expected utility EU(Sτ ). For Uα(x) = xα or U0(x) = log(x) she should

• sell at τ = 0 if µ < −σ2

2 α (because EUα(Su) > EUα(St) for u 6 t);

• sell at τ = T if µ > −σ2

2 α (here EUα(Su) 6 EUα(St) for u 6 t).
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We will study the problem of optimal selling the stock when the param-
eters µ, σ may change before the time t = T .

Consider a random sequence S0, S1, . . . such that

log
St
St−1

=

{
µ1 + σ1ξt, t < θ

µ2 + σ2ξt, t > θ

where
µ1 > −

σ2
1
2 α, µ2 < −

σ2
2
2 α are known parameters,

θ ∈ {1, 2, . . . , T + 1} is the moment of disorder of the price se-
quence.

We assume that θ is an unobservable random variable independent of
ξt with a known distribution G(t) = P(θ 6 t) ⇔ pt = P(θ = t).

(Remark: p1 is the probability that µ = µ2, σ = σ2 from the beginning;
pT+1 is the probability that µ = µ1, σ = σ1 until the time t = T .)
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The question we study:

when is it optimal to sell the stock in the above model?

By definition, the moment τ when one sells the stock should be a stop-
ping time of the sequence S, i. e.

{τ = t} ∈ σ(Su;u 6 t) for any t = 1, 2, . . .,

which means that a decision to sell the stock should be based only on
the price history up to the present moment of time.

Let {Uα(x)}α, a ∈ (−∞, 1] be the family of utility functions:

Uα(x) = xα, α ∈ (0, 1], U0(x) = log(x), Uα(x) = −xα, α < 0.

We consider the following optimal stopping problems for α 6 1:

V α = sup
τ6T

EUα(Sτ ).

The problems consist in finding the stopping times τ∗α at which the
suprema are attained.
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What can be called the solution of the problem V α?

We are interested in obtaining a Markov–type solution of the problem:
to find a sequence Zt, such that Zt is a function of S0, . . . , St and the
optimal stopping time τ∗ is

τ∗ = inf{t > 0 : Zt ∈ D(t)},

where D(t), t = 0, . . . , T are some sets in R.

In fact, we will show that D(t) are of the form

D(t) = {x : x > a(t)},

where a(0), a(1), . . . , a(T ) define the optimal stopping boundary.

We provide an algorithm to find a(t) numerically.
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Literature review

The theory of disorder detection has been developed since the 1950s.
Basic results was obtained by Page (1954, 1955), Roberts (1959),
Shiryaev (1960, 1963) and others.

The problem we consider was proposed by Beibel & Lerche (1997) for
geometric Brownian motion and later considered by Novikov & Shiryaev
(2009), Ekstöm & Lindberg (2013).

They solved the problem for the homogeneous case – when θ is expo-
nentially distributed on [0,∞) and only µ changes (σ remains constant).

The model we consider (θ is discrete and takes values in a finite set;
both µ and σ may change) is non-homogeneous and more difficult.
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The main result

Define

Xt = log
St
St−1

, t = 1, . . . , T.

Introduce the Shiryaev–Roberts statistic ψ = (ψt)t>0:

ψ0 = 0, ψt = (pt + ψt−1) · σ
1

σ2 exp
(
(Xt−µ1)2

2σ2
1
− (Xt−µ2)2

2σ2
2

)
.

Theorem. The optimal stopping time in problem V α is given by

τ∗α = inf{0 6 t 6 T : ψt > aα(t)},

where
aα(t) = inf{x > 0 : V α

t (x) = 0}
for the family of functions V α

0 , V
α
1 , . . . , V

α
T , which are increasing,

have unique positive roots, and can be found recurrently as follows:

. . . . . .
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For α = 0:

V 0
T (x) = 0 for all x > 0;

V 0
t (x) = max

{
0, µ1(1−G(t+ 1)) + µ2(x+ pt+1) + f0(t, x)

}
,

where f0(t, x) =

∫
R
V 0
t+1

[(
pt+1 + x) · σ1

σ2
exp
(
(z−µ1)2

2σ2
1
− (z−µ2)2

2σ2
2

)]
× 1
σ1
√
2π

exp
(
− (z−µ1)2

2σ2
1

)
dz

For α 6= 0:

V α
T (x) = 0 for all x > 0;

V α
t (x) = max

{
0, sgn(α) · βt

[
(β − 1)(1−G(t+ 1))

+ (γ − 1)(pt+1 + x)
]

+ fα(t, x)
}
,

where fα(t, x) =

∫
R
V α
t+1

[(
pt+1 + x) · σ1

σ2
exp
(
(z−µ1)2

2σ2
1
− (z−µ2)2

2σ2
2

)]
× 1
σ1
√
2π

exp
(
− (z−µ1−ασ2

1)
2

2σ2
1

)
dz

. . . . . .
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with the constants

β = exp

(
αµ1 +

α2σ21
2

)
, γ = exp

(
α2

2
(σ22 − σ21) + α(µ2 − µ1)

)
.

103/145



A numerical example

Let T = 100, µ1 = −µ2 = 1, σ1,2 = 1 and θ be uniformly distributed.

The graphs below presents the solution of the problem V 0 when θ = 30:
the left graph — logSt; the right graph — a0(t) and ψt.

The optimal stopping time τ∗ = 42.
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Overview of the proof

Recall, we have the sequence S = {St}t>0 such that

log
St
St−1

=

{
µ1 + σ1ξt, t < θ,

µ2 + σ2ξt, t > θ,
ξt ∼ N (0, 1),

and we look for the solution of the optimal stopping problem

V α = sup
τ6T

EUα(Sτ ).

The problem will be solved in 2 steps:

Step 1. Reduce the problem to an optimal stopping problem without
unobservable parameters.

Step 2. Prove that the solution is of the Markov type and find the
stopping boundary a(t) by backward induction.
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Reduction to a fully observable optimal stopping problem

On the measure space (Ω, FX), where FS = σ(Xt; t 6 T ), introduce
the measures Pα, α 6 1, such that

Xt
Pα∼ N (µ1 + ασ21, σ

2
1).

The explicit formula for the density is given by the formula

dP

dPα
= (ψT + pT+1) · exp

(
−α

T∑
t=1

Xt +
(
αµ1 +

α2σ2
1

2

)
T
)
.
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Lemma. For any stopping time t 6 T it holds that

EUα(Sτ ) = Eα
[
τ∑
t=1

βt−1[(β − γ)ψt + (β − 1)(1−G(t))

]
+ 1, α > 0

EU0(Sτ ) = E0

[
τ∑
t=1

[µ1(1−G(t)) + µ2ψt]

]
EUα(Sτ ) = Eα

[
τ∑
t=1

βt−1[(γ − β)ψt + (1− β)(1−G(t))

]
− 1, α < 0,

where Eα is the expectation w.r.t. Pα and

β = exp

(
αµ1 +

α2σ21
2

)
, γ = exp

(
α2

2
(σ22 − σ21) + α(µ2 − µ1)

)
.

The lemma reduces the optimal stopping problems Vα, which contain
the unobservable random variable θ, to the optimal stopping problems
for the sequence ψt without unobservable elements.
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Solution of the optimal stopping problems for ψt
Consider the Markov setting of the optimal stopping problems V α and
introduce the value functions V α

t (x) for t = 0, . . . , T

V α
t (x) = sup

τ6T−t
Eαt,x

[ τ∑
u=1

βt+u−1[(β − γ)ψu + (β − 1)(1−G(t+ u))
]

for α > 0,

V 0
t (x) = sup

τ6T−t
E0
t,x

[ τ∑
u=1

[µ1(1−G(t+ u)) + µ2ψu]
]

for α = 0,

V α
t (x) = sup

τ6T−t
Eαt,x

[ τ∑
u=1

βt+u−1[(γ − β)ψu + (1− β)(1−G(t+ u))
]

for α < 0,

where w.r.t. Eαt,x the sequence ψt satisfies the recurrent relation

ψ0 = x, ψu = (pu+t + ψu−1) ·
σ1
σ2

exp
(
(Xu−µ1)2

2σ2
1
− (Xu−µ2)2

2σ2
2

)
with X1, X2, . . . being i.i.d. N (µ1 + ασ21, σ

2
1) random variables.
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From the general optimal stopping theory, it follows that

τ∗α = inf{0 6 T : V α
t (ψt) = 0},

where 0 is the gain from instantaneous stopping.

Then we show that V α
t (x) increases for x > 0 and has a unique root

aα(t).

The recurrent relation for V α
t follows from properties of conditional

expectations.
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Applications to stock markets

We apply the results obtained to the problem of choosing the optimal
moment of time to sell stock based on real market data.

We consider the following examples:

• Apple Inc. prices in 2012;

• The NASDAQ-100 index in 1998-2004;

The model of choosing a moment to sell stock

1. We observe a sequence of stock prices (or index values)
S0, S1, . . . , ST , which, we believe, has a positive trend initially.

2. It is expected that the trend will become negative by time T .

3. For a buying time t0 < T we need to find the selling time τ maxi-
mizing the expected utility from selling.
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In order to apply the disoder detection rule, we represent the prices by
a random walk with a disorder:

1. We assume

log
St
St−1

=

{
µ1 + σ1ξt, t < θ

µ2 + σ2ξt, t > θ,

where θ ∈ {t0, . . . , T} is a random variable.
In the examples below, we will consider daily prices, so St and St+1

correspond to two consecutive trading days.

2. The parameters µ1, σ are estimated using the data S0, . . . , St0 .

The choice of µ2, σ2 and the distribution of θ is subjective. In the
numerical examples below we take µ2 = −µ1, θ ∼ U{t0, . . . , T},
which, as we found empirically, gives good results.

3. Then we choose the stopping time maximizing EUα(Sτ ). In the
examples below, Uα(x) = x.
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How to estimate T?

A difficult problem is to estimate the final time T , until which, we
believe, a disorder will happen.

One model for predicting market crashes is the bond-stock earnings
yield differential (BSEYD) model, see Ziemba, The stochastic pro-
gramming approach to asset liability and wealth management, 2003.

The BSEYD model relates the yield on stocks, measured by the ratio of
earnings to stock prices, to the yield on nominal Treasury bonds. When
the bond yield is too high, there is a shift out of stocks into bonds. If
the adjustment is large, it causes an equity market correction.
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The model is based on observing the earnings/price ratio (E/P) and the
bond yield (B).

When the difference

B− E

P

exceeds some threshold, a decline in stock prices is expected.

As an example, let us consider the NIKKEI index in 1980-1990; the data
are taken from Ziemba, 2003.
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Example 1: Apple Inc

During 2009-2012, Apple’s stock price increased almost 9 times, from
$82.33 (6-Mar-09), to $705.07 (21-Sep-12). By the end of 2012 it fell
to $532.17.
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Choosing the optimal time to sell Apple

We assume T ∼ 31 Dec. 2012..

Buy Sell % of max. Return∗, %
3-Jan-11
($ 329.57)

9-Oct-12
($ 635.85)

90.56 37.13

1-Jul-11
($ 343.26)

8-Oct-12
($ 638.17)

90.89 48.83

3-Jan-12
($ 411.23)

8-Oct-12
($ 638.17)

90.89 57.38

1-May-12
($ 582.13)

9-Oct-12
($ 635.85)

90.56 19.86

3-Jul-12
($ 599.41)

9-Oct-12
($ 635.85)

90.56 21.87

1-Aug-12
($ 606.81)

11-Oct-12
($ 628.10)

89.46 17.38

∗ Return = average annual return from date n0 to date τ∗.
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On the graphs – the result of applying the method when buying
on January 3, 2012.

Left – the graph of the price (the red point is the selling price).

Right – the process ψ and the optimal stopping boundary.
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Example 2: NASDAQ-100

From the beginning of 1994, by March 2000 the NASDAQ-100 increased
more than 12 times, from 395 to 4816, and then fell to 795 by October
2002.
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Choosing the optimal time to sell NASDAQ-100

Buy Sell % of max. Return, %
2-Jul-98
($ 1332.53)

12-Apr-00
($ 3633.63)

77.23 56.30

4-Jan-99
($ 1854.39)

13-Apr-00
($ 3553.81)

75.54 50.75

1-Jul-99
($ 2322.32)

13-Apr-00
($ 3553.81)

75.54 53.88

1-Oct-99
($ 2404.45)

14-Apr-00
($ 3207.96)

68.19 53.42

3-Jan-00
($ 3790.55)

14-Apr-00
($ 3207.96)

68.19 -22.89

The assumption: T ∼ Dec. 31, 2001.
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On the graph, the buying dates are marked by the blue points, and April
13, 2000 (one of the selling dates) is marked by the red point.
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Concluding remarks

The solution we obtained should not be thought of as the only true rule
for choosing the moment to sell stock:

• Real stock prices do not exactly follow Gaussian random walk (or
geometric Brownian motion);

• It is difficult to estimate the parameters µ, σ, and the prior distribution
of θ;

• There may be many disorders rather than only one.

However, the optimal criteria we find can be used as indicators of trend
changes together with other known indicators.

The advantage of the result we obtain is that we develop a strict math-
ematical model and find the mathematically optimal criteria. We also
show that these criteria are applicable to real market data.
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Disorder detection for Brownian motion

Let B = (Bt)t>0 be a Brownian motion on a probability space
(Ω,F ,P).

Suppose we sequentially observe the process X = (Xt)t>0

Xt = µ(t− θ)+ +Bt ⇐⇒ dXt = µI(t > θ)dt+ dBt,

where µ 6= 0 is a known constant, and θ > 0 is an unknown moment of
the appearance of a drift (a moment of disorder).

Each disorder detection rule is identified with a stopping time τ of
the filtration (FX

t ) and is interpreted as the time when we raise an
alarm that a disorder has occurred.

Generally, we want to find τ , which is in some sense close to θ.
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Variant A

Suppose θ is a random variable with values in [0,∞] and M is the class
of Markov times w.r.t the filtration (FX

t )t>0.

• Bayesian formulation.
For a given c > 0, to find τ∗ ∈M minimizing

inf
τ

[
P(τ < θ) + cE(τ − θ)+

]
.

• Conditionally variational formulation.
In the class Mα = {τ ∈ M : P(τ < θ) 6 α}, where α ∈ (0, 1), to
find τ∗α minimizing

inf
τ∈Mα

E(τ − θ | τ > θ).

• Absolute formulation.
To find τ∗ ∈M minimizing

inf
τ∈M

E|τ − θ|.
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Variant B

Let MT = {τ ∈M : E∞τ = T} be the class of stopping times τ with
the mean time E∞τ under the assumption of no disorder, equals T .

The problem is to find τ∗T ∈MT minimizing

inf
τ∈MT

1

T

∫ T

0
Eθ(τ − θ)+dθ,

where Eθ is the expectation under the assumption that the disorder
occurs at time θ.

We call this variant

generalized Bayesian setting

because the integration w.r.t dθ can be considered as the integration
w.r.t the “generalized uniform” distribution on R+.
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Solutions of the problems of Variant A

We will assume that θ is an exponentially distributed random variable:

P(θ = 0) = π, P(θ > t | θ > 0) = e−λt,

where π ∈ [0, 1) and λ > 0 are known.

Introduce the a posteriori probability process π = (πt)t>0

πt = P(θ 6 t | FX
t ), π0 = π.

Then we find that for any stopping time τ with Eτ <∞

P(τ < θ) + cE(τ − θ)+ = Eπ

[
1− πτ + c

∫ τ

0
πtdt

]
,

where Eπ stands for the expectation w.r.t. the distribution Pπ of the
process X with π0 = π. The process (πt)t>0 has the stochastic differ-
ential

dπt =
(
λ− µ2π2t

)
(1− πt)dt+ µπt(1− πt)dXt.
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First, we solve the Bayesian formulation of the problem.

The process X = (Xt)t>0 admits the innovation representation

Xt = µ

∫ t

0
πsds+ B̃t

where B̃t = Xt − µ
∫ t
0 πsds is a Brownian motion w.r.t (FX

t )t>0.

Consequently, πt admits the stochastic differential

dπt = λ(1− πt)dt+ µπt(1− πt)dB̃t, π0 = π,

and is a Markov process.

Thus we can formulate the Markovian optimal stopping problem

V (π) = inf
τ

Eπ

[
1− πt + c

∫ τ

0
πsds

]
.
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To solve this problem, we consider the corresponding free-boundary
problem {

V (π) = 1− π, π > A,

LπV (π) = −cπ, π < A,

where Lπ is the infinitesimal operator of the process πt:

Lπ = λ(1− π)
d

dπ
+
µ2

2
π2(1− π)2

d

dπ2

The general solution of the first equation contains two arbitrary con-
stants C1, C2. Thus, in order to find unknown C1, C2, A we use the
following three boundary conditions

V (A) = 1−A,
V ′(A) = −1 (smooth fit)

V ′(0) = 0.
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Using the above conditions we find

V (π) =

{
(1−A∗)−

∫ A∗
π y(s)dx, π ∈ [0, A∗),

1− π, π ∈ [A∗, 1],

where

y(x) = − 2c

µ2

∫ x

0

e2λ(G(x)−G(u))/µ2

u(1− u)2
du, G(u) = log

u

1− u
− 1

u
.

The optimal stopping point A∗ = A∗(c) can be found from the equation

2c

µ2

∫ A∗

0

e2λ(G(A∗)−G(u))/µ2

u(1− u)2
du = 1.

Then the optimal stopping time τ∗ = τ∗(c) is given by

τ∗ = inf{t > 0 : πt > A∗(c)}.
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In the conditionally variational formulation

inf
τ∈Mα

Eπ(τ − θ | τ > θ)

the optimal stopping time is of the very simple structure:

τ∗α = inf{t > 0 : πt > 1− α}.

Indeed, for any stopping time τ 6≡ 0 we have

Eπ(τ − θ | τ > θ) =
Eπ(τ − θ)+

Pπ(τ > θ)
.

Using that Pπ(τ < θ) = Eπ(1− πτ ) if π 6 1−α, and the process πt is
continuous, we see that we must have 1− πτ∗α = α, or πτ∗α = 1− α.

(Note that if π > 1− α then τ∗α = 0.)
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The solution of the absolute formulation can be obtained from the
Bayesian one (in the case θ is exponential).

Indeed, we have

E|τ − θ| = E[θ − τ + 2(τ − θ)+] =
1

λ
− E

[
τ + 2

∫ τ

0
πsds

]
,

where it was established above that E(τ − θ)+ = E
∫ τ
0 πsds.

Since dπt = λ(1− πt)dt+ µπt(1− πt)dB̃t, we find

Eπτ = λ
[∫ τ

0
(1− πs)ds

]
,

from where we get that Eτ = Eπτ/λ+ E
∫ τ
0 πsds, and finally

E|τ − θ| = 1

λ
E
[
1− πτ +

∫ τ

0
πsds

]
so the optimal τ∗ solves the Bayesian problem with c = λ.
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Variant B

We want to solve the following optimal stopping problem: to find

B(T ) = inf
τ∈MT

1

T

∫ ∞
0

Eθ(τ − θ)+dθ,

where θ is a parameter with values in R+ and MT = {τ : E∞τ = T}.

The key point is the following representation:∫ ∞
0

Eθ(τ − θ)+dθ = E∞
∫ τ

0
ψudu,

where dψu = du+ µψudXu.

To prove this representation, we note first of all that (τ − θ)+ =∫∞
θ I(u 6 τ)du.
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Using change of measure, we get

Eθ(τ−θ)+ =

∞∫
θ

EθI(u 6 τ)du =

∞∫
θ

E∞
Lu
Lθ

I(u 6 τ)du = E∞
∫ τ

0

Lu
Lθ
du,

where Lt = dP0
t /dP∞t , and∫ ∞

0
Eθ(τ − θ)+dθ = E∞

∫ ∞
0

[∫ τ

0

Lu
Lθ
du

]
dθ

= E∞
∫ τ

0

[∫ ∞
0

Lu
Lθ
dθ

]
du

= E∞
∫ τ

0
ψudu.

The process (ψt)t>0 is a P∞-diffusion Markov process with the differ-
ential dψt = dt+ µψtdBt. We see that

inf
τ∈MT

∫ ∞
0

Eθ(τ − θ)+dθ = inf
τ∈MT

E∞
∫ τ

0
ψudu.
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From the general theory of optimal stopping for Markov processes it
follows that an optimal stopping time in the problem

τ  inf
τ∈MT

E∞
∫ τ

0
ψudu

has the following form:

τ∗T = inf{t > 0 : ψt > b(T )},

where b(T ) is such that E∞τ∗T = T . Since ψt = t + µ
∫ t
0 ψudBu, we

find that
E∞ψτ∗T = E∞τ∗T .

But ψτ∗T = b(T ), so that b(T ) = E∞τ∗T = T . We have got, for optimal
stopping time τ∗T in Variant B, the very simple formula:

τ∗T = inf{t > 0 : ψt > T}.
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For this stopping time τ∗T the quantity E∞
∫ τ∗T
0 ψudu is easy to find. In-

deed, consider the process (ψt)t>0 with ψ0 = x > 0. The corresponding
function

U(x) = E∞x
∫ τ∗T
0 ψudu,

E∞
x stands for averaging w.r.t. the

P∞
x -distribution of (ψt)t>0 when ψ0 = x

satisfies the backward equation

L∞U(x) = −x, where L∞ ≡ ∂
∂x + ρx2 ∂2

∂x2
= −x, ρ = µ2

2 .

Put for simplicity ρ = 1, then it is easy to find that

U(x) = G
(
1
T

)
−G

(
1
x

)
, where G(x) =

∫∞
x F (u) u−2du,

F (u) = eu(−Ei(−u)),

−Ei(−u) ≡
∫∞
u

e−t

t dt.
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These formulae imply that

B(T ) = infτ∈MT
1
T

∫∞
0 Eθ(τ − θ)+dθ = infτ∈MT

1
T E∞

∫ τ
0 ψudu,

= 1
T E∞

∫ τ∗T
0 ψudu = 1

T U(0) = 1
TG

(
1
T

)
=

= F
(
1
T

)
− ∆

(
1
T

)
, where ∆(b) = 1− b

∫∞
0 e−bu log(1+u)

u du.

Thus, B(T ) = 1
TG

(
1
T

)
= F

(
1
T

)
− ∆

(
1
T

)
and we have the following

asymptotics for small and large T :

B(T ) =

{
T
2 +O(T 2), T → 0,

log T − (1 + C) +O(T−1 log2 T ), T →∞,

where C = 0.577 . . . is the Euler constant.
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7. Maximal inequalities

Let B = (Bt)t>0 be a standard Brownian motion defined on a probability
space (Ω,F ,P).

Our aim is to prove the following maximal inequalities for B.

Theorem. For any stopping time τ of the filtration (FB
t )t>0 the fol-

lowing inequalities hold:

E max
s6τ

Bs 6
√

Eτ , (1)

E max
s6τ
|Bs| 6

√
2Eτ , (2)

E
[
max
s6τ

Bs −min
s6τ

Bs
]
6
√

3Eτ . (3)

(1), (2): Dubins, Shepp, Shiryaev, Theory Probab. Appl. 38:2 (1993).

(3): Dubins, Gilat, Meilijson, Ann. Prob. 37:1 (2009); Zhitlukhin, Statistics &

Decision 27 (2009).
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Remark 1. We also show that these inequalities are strict in the fol-
lowing sense:

For any T > 0 there exist stopping times τ1, τ2, τ3 with Eτi = T
such that inequalities (1), (2), (3) turn into equalities for τ1, τ2, τ3
respectively.

Remark 2. For any non-random time t > 0 we have

E max
s6t

Bs =

√
2

π
t,

E max
s6t
|Bs| =

√
π

2
t.
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The maximal inequality for maxB

Let us consider the following auxiliary optimal stopping problem with
the parameter c > 0:

V 1
c = sup

τ>0
E
[
max
s6τ

Bs − cτ
]
.

We will use the solutions of this problem to prove the maximal inequality
for maxB. We will find V 1

c = 1/(4c), so for any τ

E max
s6τ

Bs 6 inf
c>0

[V 1
c + cEτ ] = inf

c>0
[1/(4c) + cEτ ] =

√
Eτ .

Moreover, for any T > 0 and c = 1/(2
√
T ) the optimal τ∗1 (c) is such

that Eτ∗1 (c) = T and E max
s6τ∗1 (c)

Bs =
√
T , i. e. inequality (1) is strict.
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Solution of problem V 1
c

V 1
c = sup

τ>0
E
[
max
s6τ

Bs − cτ
]

It is possible to apply the general theory of optimal stopping to this
problem, but we prefer to give a simpler, but “tricky” solution.

Obviously, we can consider only stopping times τ with Eτ < ∞. For
any such stopping time we have EBτ = 0, so

E
[
max
s6τ

Bs − cτ
]

= E
[
max
s6τ

Bs −Bτ − cτ
]

By Lévy’s theorem, Law(maxB − B) = Law(|W |), where W is
a Brownian motion. So we have

E
[
|Wτ | − cτ

]
= E

[
|Wτ | − cW 2

τ

]
,

where we used the Wald identity: EW 2
τ = Eτ .
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It is easy to check that

|x| − cx2 6 1

4c
for any x > 0, |x| − cx2 =

1

4c
for x =

1

2c
.

Then the optimal stopping time for V 1
c is given by

τ1∗c = inf{t > 0 : |Wt| = 1/(2c)}

or, recalling that |Wt| = max
s6t

Bs −Bt,

τ1∗c = inf{t > 0 : max
s6t

Bs −Bt = 1/(2c)}

and we have

V 1
c =

1

4c
, Eτ1∗c = 1/(4c2).
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Moreover, it is possible to extend the maximal inequality for maxB to
any continuous local martingale M = (Mt)t>0 with M0 = 0. By
changing the time we get

E max
s6τ

Ms = E max
s6τ

B〈M〉s = E max
s6〈M〉τ

Bs 6
√

E〈M〉τ .
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The maximal inequality for max |B|
We have

E max
t6τ
|Bt| = E max

t>0
|Bt∧τ | 6 E

{
max
t>0

E
[
|Bτ |

∣∣Ft∧τ
]}

= E
{

max
t>0

E
[
|Bτ | − E|Bτ |

∣∣Fτ∧t
]}

+ E|Bτ |

(∗)
6
√

E(|Bτ | − E|Bτ |)2 + E|Bτ |

6
√

Eτ − (E|Bτ |)2 + E|Bτ |
(∗∗)
6
√

2Eτ

Where in (∗) we used that E[|Bτ | − E|Bτ | | Ft∧τ ] is a continuous
martingale, and in (∗∗) we used the inequality

√
A− x2 + x 6

√
2A

valid for any 0 6 x 6
√
A.

The maximal inequality is attained at the stopping times

τ∗2 = inf
{
t > 0 : max

s6t
|Bs| − |Bt| > a

}
for any a > 0.
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Indeed, for any fixed a > 0 denote σa = inf{t > 0 : |Bt| = a}. Then

τ∗2 = σa + inf
{
t > σa : max

s6t
|Bs| − |Bt| > a

}
− σa.

From the strong Markov property,

inf
{
t > σa : max

s6t
|Bs|−|Bt| > a

}
−σa

Law
= inf

{
t > 0 : max

s6t
Bs−Bt > a

}
.

Thus
Eτ∗2 = 2a2, E max

s6τ∗2
|Bs| = 2a,

which gives
E max
s6τ∗2
|Bs| =

√
2Eτ∗2 .
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Remark. Another approach to prove this maximal inequality is to solve
the optimal stopping problem

V 2
c = sup

τ>0
E
[
max
s6τ
|Bs| − cτ

]
.

Its solution is given by

τ2∗c = inf{t > 0 : max
s6t
|Bs| − |Bt| > 1/(2c)}, V 2

c =
1

2c
.
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The maximal inequality for maxB −minB

The inequality is proved by solving the optimal stopping problem

V 3
c = sup

τ>0
E
[
max
s6τ

Bs −min
s6τ

Bs − cτ
]
.

We provide only the answer:

τ3∗c = inf{t > 0 : (max
s6t

Bs −Bt) ∧ (Bt −min
s6t

Bs) > 1/(2c)}

V 3
c =

3

4c

Thus one needs to stop when Bt deviates more than 1/(2c) from both
its current maximum and minimum.

The proof can be carried in the same way as for V 2
c , but is more compli-

cated. Another proof, based on the martingale approach can be found
in [Dubins, Gilat, Meilijson, Ann. Probab. 37:1 (2009)].
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