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Abstract

The Kelly criterion and fractional Kelly strategies hold an impor-
tant place in investment management theory and practice. Both the
Kelly criterion and fractional Kelly strategies, e.g. invest a fraction
f of one’s wealth in the Kelly portfolio and a proportion 1 − f in
the risk-free asset, are optimal in the continuous time setting of the
Merton [33] model. However, fractional Kelly strategies are no longer
optimal when the basic assumptions of the Merton model, such as the
lognormality of asset prices, are removed. In this chapter, we present
an overview of some recent developments related to Kelly investment
strategies in an incomplete market environment where asset prices are
not lognormally distributed. We show how the definition of fractional
Kelly strategies can be extended to guarantee optimality. The key idea
is to get the definition of fractional Kelly strategies to coincide with
the fund separation theorem related to the problem at hand. In these
instances, fractional Kelly investment strategies appear as the natural
solution for investors seeking to maximize the terminal power utility
of their wealth.

1 Introduction

The Kelly criterion and fractional Kelly strategies hold an important place
in investment management theory and practice. The Kelly criterion maxi-
mizes the log-return on invested wealth and is therefore related to the semi-
nal work of Bernoulli [9]. Early contributions to the theory and application
of the Kelly criterion to gambling and investment include Kelly [20], La-
tané [23], Breiman [8], Thorp [43] or Markowitz [32]. The main reference
is undeniably [30]. Readers interested in an historical account of the Kelly
criterion and of its use at the gambling table and in the investment industry
will refer to Poudstone [39]. From a practical investment management per-
spective, several of the most successful investors, including Keynes, Buffett
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and Gross have used Kelly-style strategies in their funds (see Ziemba [48],
Thorp [44] and Ziemba and Ziemba [47] for details).

The Kelly criterion has a number of good as well as bad properties, as
discussed by MacLean, Thorp and Ziemba [27]. Its ‘good’ properties ex-
tend beyond practical asset management and into asset pricing theory, as
the Kelly portfolio is the numéraire portfolio associated with the physical
probability measure. This observation forms the basis of the ‘benchmark
approach to finance’ proposed by Platen [37] and Heath and Platen [38] (see
also Long [26] and Becherer [3]). The ‘bad’ properties of the criterion are
also well studied and understood. Samuelson, in particular, was a long time
critique of the Kelly criterion (see [40], [42] and [41]). A main drawback of
the Kelly criterion is that it is inherently a very risky investment.

To address this shortcoming, MacLean, Ziemba and Blazenko [31] pro-
pose the following fractional Kelly strategy: invest a fraction f of one’s
wealth in the Kelly portfolio and a proportion 1 − f in the risk-free asset.
MacLean, Sanegre, Zhao and Ziemba [29] MacLean, Ziemba and Li [28] pur-
sued further research in this direction. There are two key advantages to this
definition: first, a fractional Kelly strategy is significantly less risky than
the full Kelly portfolio, while maintaining a significant part of the upside.
Second, fractional Kelly strategies are optimal in the continuous time setting
of the Merton [33] model. In fact, fractional Kelly strategies correspond to
the optimal investment of a power utility investor seeking to maximize the
terminal utility of his/her wealth. Unfortunately, fractional Kelly strategies
are no longer optimal when the basic assumptions of the Merton model,
such as the lognormality of asset prices, are removed (see MacLean, Ziemba
and Li [28]). In recent years, a number of attempts have been made to rem-
edy this situation and extend the definition of fractional Kelly strategies to
guarantee their optimality.

In this chapter, we present an overview of some recent developments re-
lated to Kelly investment strategies in an incomplete market environment
where asset prices are not lognormally distributed. In section 2, we intro-
duce the Kelly portfolio and fractional Kelly strategies in the context of the
Merton model. Next, we consider in Section 3 an Intertemporal Capital
Asset Pricing Model (ICAPM) where the drift of the asset price dynam-
ics are affine functions of some affine factors. In this ICAPM, traditionally
defined fractional Kelly strategies are no longer optimal. We must there-
fore extend the definition of the fractional Kelly strategies along the lines
of a fund separation theorem in order to guarantee optimality. In section
4, we present an extension to a benchmarked investor, that is an investor
with the objective of outperforming a given investment benchmark, before
considering the impact of partial observation on the underlying valuation
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factors in Section 6. Finally, we look at optimal investment strategies in
a jump-diffusion setting, where asset prices follow jump-diffusion processes
and the underlying factors are modelled as diffusion processes.

2 The Kelly Criterion Portfolio and Fractional Kelly
Strategies in the Merton World

2.1 The Kelly Criterion Portfolio in the Merton Model

We start by introducing some of the notation that we will need in the re-
mainder of the chapter. Let (Ω, {Ft} ,F ,P) be the underlying probability
space. On this space is defined an Rm-valued (Ft)-Brownian motion W (t)
with components Wk(t), k = 1, . . . , N . Si(t) denotes the price at time t of
the ith security, with i = 0, . . . ,m. Let S0 denote the wealth invested in
a money market account. The dynamics of the money market account is
given by:

dS0(t)

S0(t)
= rdt, S0(0) = s0 (2.1)

where r ∈ R+ is the risk-free rate. The dynamics of the m risky securities
and n factors can be expressed as:

dSi(t)

Si(t)
= µidt+

N∑
k=1

σikdWk(t), Si(0) = si, i = 1, . . . ,m (2.2)

where the market parameters µ = (µ1, . . . , µm)′ represents the rate of return
vector and the volatility Σ := [σij ] , i = 1, . . . ,m, j = 1, . . . ,m is a m ×m
matrix. More synthetically,

dS(t) = D(S(t))µdt+D(S(t))ΣdW (t) (2.3)

where D(S(t)) denotes the diagonal matrix with S1(t), . . . , SM (t) on the di-
agonal.

We make the further assumption that:

Assumption 2.1. The matrix Σ is positive definite.

This assumption rules out simple arbitrage opportunities.

Let Gt := σ((S(s), X(s)), 0 ≤ s ≤ t) be the sigma-field generated by
the security, liability and factor processes up to time t. An investment
strategy or control process is an Rm-valued process with the interpretation
that hi(t) is the fraction of current portfolio value invested in the ith asset,
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i = 1, . . . ,m. The fraction invested in the money market account is then
h0(t) = 1−

∑m
i=1 hi(t).

Definition 2.2. An Rm-valued control process h(t) is in class A(T ) if the
following conditions are satisfied:

1. h(t) is progressively measurable with respect to {B([0, t])⊗ Gt}t≥0 and
is left continuous with right limit (càdlàg);

2. P
(∫ T

0 |h(s)|2 ds < +∞
)

= 1, ∀T > 0;

3. the Doléans exponential χht , given by

χht := exp

{
γ

∫ t

0
h(s)′ΣdWs −

1

2
γ2
∫ t

0
h(s)′ΣΣ′h(s)ds

}
(2.4)

is an exponential martingale, i.e. E
[
χhT
]

= 1

Definition 2.3. We say that a control process h(t) is admissible if h(t) ∈
A(T ).

Taking the budget equation into consideration, the wealth, V (t), of the
asset in response to an investment strategy h ∈ H follows the dynamics

dV (t)

V (t)
= rdt+ h′(t) (µ− r1) dt+ h′(t)ΣdWt

(2.5)

with initial endowment V (0) = v and where 1 ∈ Rm is the m-element unit
column vector. Thus,

lnV (t) = ln v +

∫ t

0
r + h′(s) (µ− r1)− 1

2
h′(s)ΣΣ′h(s)ds+

∫ t

0
h′(s)ΣdWs

(2.6)

The objective of a Kelly investor with a fixed time horizon T is to max-
imize

J(t, h;T, γ) = E [U(VT )] = E [lnVT ]

A pointwise maximization of the criterion J yields the Kelly portfolio:

h∗ = (ΣΣ′)−1 (µ− r1)

Substituting back in (2.6), we find that the wealth of a Kelly investor is

V ∗(T ) = v exp

{[
r +

1

2
(µ− r1)′ (ΣΣ′)−1 (µ− r1)

]
(T − t)

+ (µ− r1)′ (ΣΣ′)−1Σ(WT −Wt)
}

(2.7)
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and the instantaneous growth rate of the strategy follows the dynamics

dRt =

[
r +

1

2
(µ− r1)′ (ΣΣ′)−1 (µ− r1)

]
dt+ (µ− r1)′ (ΣΣ′)−1ΣdWt

(2.8)

2.2 Fractional Kelly Strategies

To mitigate the risks inherent in a the Kelly investment strategy, MacLean,
Ziemba and Blazenko [31] propose the following fractional Kelly strategy:
invest a fraction f of one’s wealth in the Kelly portfolio and a proportion
1−f in the risk-free asset. MacLean, Sanegre, Zhao and Ziemba [29] propose
a methodology for computing the optimal fractional Kelly weights at dis-
crete time intervals. In a continuous time setting where asset prices follow
a geometric Brownian motion, they show that a fractional Kelly strategy
is optimal with respect to Value at Risk and a Conditional Value at Risk
criteria. MacLean, Ziemba and Li [28] further prove that fractional Kelly
strategies are efficient when asset prices are lognormally distributed.

This last result is actually a corollary to Merton’s Fund Separation the-
orem. In the Merton problem with no consumption and a power utility
function, the objective of an investor is to maximize the expected utility of
terminal wealth over a fixed time horizon T :

J(t, h;T, γ) = E [U(VT )] = E

[
V γ
T

γ

]
= E

[
eγ lnVT

γ

]
with risk aversion coefficient γ ∈ (−∞, 0)∪ (0, 1). We define the value func-
tion Φ corresponding to the maximization of the auxiliary criterion function
J(t, h;T, γ) as

Φ(t) = sup
h∈A

J(t, h;T, γ) (2.9)

By Itô’s lemma,

eγ lnV (t) = vγ exp

{
γ

∫ t

0
g(h(s); γ)ds

}
χht (2.10)

where

g(h; γ) = −1

2
(1− γ)h′ΣΣ′h+ h′(µ− r1) + r

and χht is defined in (2.4)
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We can solve the stochastic control problem associated with (2.9) by a
change of measure argument (see exercise 8.18 in [35] or [21] in the context
of risk sensitive control). Let Ph be the measure on (Ω,FT ) defined via the
Radon-Nikodým derivative1

dPh
dP

:= χhT (2.11)

For h ∈ A(T ),

W h
t = Wt − γ

∫ t

0
Σ′h(s)ds

is a standard Brownian motion under the measure Ph. Moreover, the control
criterion under this new measure is

I(t, h;T, γ) =
vγ

γ
Eh
t,x

[
exp

{
γ

∫ T

t
g(h(s); γ)ds

}]
(2.12)

where Eh
t [·] denotes the expectation taken with respect to the measure Ph

at an initial time t.

Under the measure Ph, the control problem can be solved through a
pointwise maximisation of the auxiliary criterion function I(v, x;h; t, T ).
The optimal control h∗ is simply the maximizer of the function g(x;h; t, T )
given by

h∗ =
1

1− γ
(ΣΣ′)−1 (µ− r1)

which represents a position of 1
1−γ in the Kelly criterion portfolio.

Remark 2.4. The change of measures simplifies the problem considerably:
under the measure Ph we can solve the optimization through a pointwise
maximization, as we did earlier on in the logarithmic utility case.

Substituting (2.13) into (2.10) and (2.4), we derive the value function
Φ(t), or optimal utility of wealth,

Φ(t) =
vγ

γ
exp

{
γ

[
r +

1

2(1− γ)
(µ− r1) (ΣΣ′)−1 (µ− r1)

]
(T − t)

}
as well as an exact form for the exponential martingale χ∗t associated with
the control h∗:

χ∗t := exp

{
γ

1− γ
(µ− r1)′Σ−1W (t)

−1

2

(
γ

1− γ

)2

(µ− r1)′ (ΣΣ′)−1 (µ− r1) t

}
(2.13)

1Loève [25] provides a thorough treatment of the Radon-Nikodým theorem

6



Therefore, fractional Kelly strategies appear as a consequence of a clas-
sical Fund Separation Theorem:

Theorem 2.5 (Fund Separation Theorem). Any portfolio can be expressed
as a linear combination of investments in the Kelly (log-utility) portfolio

hK(t) = (ΣΣ′)−1 (µ− r1) (2.14)

and the risk-free rate. Moreover, if an investor has a risk sensitivity γ, the
proportion of the Kelly portfolio will equal 1

1−γ .

A key limitation of fractional Kelly strategies is that they are only op-
timal within the Merton model, that is when asset prices are lognormally
distributed (see also MacLean, Ziemba and Li [28]). This situation suggests
that the definition of Fractional Kelly strategies could be broadened in or-
der to guarantee optimality. We can take a first step in this direction by
revisiting the ICAPM (see Merton[34]).

3 Incomplete Markets and Intertemporal Capital
Asset Pricing Model

3.1 The Model

Merton [34] proposed an Intertemporal Capital Asset Pricing Model (ICAPM)
in which the drift rate of the asset prices depend on a number of Normally-
distributed factors. Bielecki and Pliska (see in particular [5] and [6]), Kuroda
and Nagai [21] as well as Davis and Lleo (see [11],[12] and [15]) further de-
veloped this idea in the context of risk-sensitive control.

Let (Ω, {Ft} ,F ,P) be the underlying probability space. On this space is
defined an RN -valued (Ft)-Brownian motion W (t) with components Wk(t),
k = 1, . . . , N . Si(t) denotes the price at time t of the ith security, with
i = 0, . . . ,m, and Xj(t) denotes the level at time t of the jth factor, with
j = 1, . . . , n. We also assume that the factors are observable.

Let S0 denote the wealth invested in a money market account. The
dynamics of the money market account is given by:

dS0(t)

S0(t)
=
(
a0 +A′0X(t)

)
dt, S0(0) = s0 (3.1)

where a0 ∈ R is a scalar constant, A0 ∈ Rn is a n-element column vector
and throughout the paper x′ denotes the transpose of the matrix or vector
x.. We further assume that the expected rates of return of the assets depend
on n valuation factors X1(t), . . . , Xn(t) which follow the dynamics given in
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equation (3.3) below Let N = n+m. The dynamics of the m risky securities
and n factors are

dS(t) = D (S(t)) (a+AX(t))dt+D (S(t)) ΣdW (t), S(0) = s (3.2)

and

dX(t) = (b+BX(t))dt+ ΛdW (t), X(0) = x (3.3)

where X(t) is the Rn-valued factor process with components Xj(t) and the
market parameters a, A, b, B, Σ := [σij ] , i = 1, . . . ,m, j = 1, . . . , N ,
Λ := [Λij ] , i = 1, . . . , n, j = 1, . . . , N are matrices of appropriate dimen-
sions.

Throughout the rest of the chapter, we assume the following:

Assumption 3.1. The matrices ΣΣ′ and ΛΛ′ are positive definite.

The wealth V (t) of the portfolio in response to an investment strategy
h ∈ A(T ) is now factor-dependent with dynamics

dV (t)

V (t)
=
(
a0 +A′0X(t)

)
dt+ h′(t)

(
â+ ÂX(t)

)
dt+ h′(t)ΣdWt

(3.4)

where â := a− a01, Â := A− 1A′0, and the initial endowment V (0) = v.

The investor seeks to maximize

Φ(t, x) = sup
h∈A

J(t, x, h;T, γ) (3.5)

where the expected utility of terminal wealth J(t, x, h;T, γ) is factor-dependent:

J(t, x, h;T, γ) = E [U(VT )] = E

[
V γ
T

γ

]
= E

[
eγ lnVT

γ

]
By Itô’s lemma,

eγ lnV (t) = vγ exp

{
γ

∫ t

0
g(Xs, h(s); γ)ds

}
χht (3.6)

where

g(x, h; γ) = −1

2
(1− γ)h′ΣΣ′h+ h′(â+ Âx) + a0 +A′0x (3.7)

and the exponential martingale χht is still given by (2.4).
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Applying the change of measure argument, we obtain the control crite-
rion under the measure Ph

I(t, x, h;T, γ) =
vγ

γ
Eh
t,x

[
exp

{
γ

∫ T

t
g(Xs, h(s); γ)ds

}]
(3.8)

where Eh
t,x [·] denotes the expectation taken with respect to the measure Ph

and with initial conditions (t, x). The dynamics of the state variable X(t)
under the new measure is

dX(t) =
(
b+BX(t) + γΛΣ′h(t)

)
dt+ ΛdW h

t , t ∈ [0, T ] (3.9)

The value function Φ for the auxiliary criterion function I(t, x;h;T, γ)
is defined as

Φ(t, x) = sup
h∈A(T )

I(t, x;h;T, γ) (3.10)

After solving the stochastic control problem (see [13] for an outline of the
argument connecting ICAPM and risk-sensitive asset management, as well
as [5] and [21] for details), we obtain the optimal investment policy h∗(t)

h∗(t) =
1

1− γ
(
ΣΣ′

)−1 [
â+ ÂX(t) + γΣΛ′DΦ̃(t,X(t))

]
(3.11)

as well as a solution for the logarithmically transformed value function Φ̃

1

γ
ln Φ(t, x) := Φ̃(t, x) =

1

2
x′Q(t)x+ x′q(t) + k(t) (3.12)

where Q is a n × n symmetric non-negative matrix solving a Riccati equa-
tion, q is a n-element column vector solving a linear ODE and k is a scalar
respectively satisfying (see [21] for details). As a result,

h∗(t) =
1

1− γ
(
ΣΣ′

)−1 [
â+ ÂX(t) + γΣΛ′ (Q(t)X(t) + q(t))

]
(3.13)

In the ICAPM, the classical Kelly strategy splitting the wealth of an
investor in an allocation to the Kelly portfolio and an allocation to the money
market account is no longer optimal. However, a new view of Fractional
Kelly investing emerges as a consequence of the following ICAPM Fund
Separation theorem:

Theorem 3.2 (ICAPM Fund Separation Theorem). Any portfolio can
be expressed as a linear combination of investments into two funds with
respective risky asset allocations:

hK(t) = (ΣΣ′)−1
(
â+ ÂX(t)

)
hI(t) = −(ΣΣ′)−1ΣΛ′ (Q(t)X(t) + q(t)) (3.14)
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and respective allocation to the money market account given by

hK0 (t) = 1− 1′(ΣΣ′)−1
(
â+ ÂX(t)

)
hI0(t) = 1 + 1′(ΣΣ′)−1ΣΛ′ (Q(t)X(t) + q(t))

Moreover, if an investor has a risk aversion γ, then the respective weights
of each mutual fund in the investor’s portfolio equal 1

1−γ and − γ
1−γ , respec-

tively.

In the factor-based ICAPM,

(
ΣΣ′

)−1 [
â+ ÂX(t)

]
(3.15)

represents the Kelly (log utility) portfolio and(
ΣΣ′

)−1
ΣΛ′ (Q(t)X(t) + q(t)) (3.16)

is the ‘intertemporal hedging porfolio’ identified by Merton. The appropri-
ate definition of Kelly strategies is not an investment in the Kelly portfolio
supplemented by cash, but an investment in the Kelly portfolio and the in-
tertemporal hedging portfolio. This new definition raises some questions as
to the practicality of interemporal hedging portfolio as an investment option.

When the asset price noise and the factor noise are uncorrelated, i.e.
ΣΛ′ = 0, the intertemporal hedging portfolio vanishes and is replaced by an
allocation to the money market asset. In this case, fractional Kelly strategies
are optimal and we have the following corollary:

Corollary 3.3 (ICAPM Fund Separation Theorem with Uncorrelated Noise).
Any portfolio can be expressed as a linear combination of investments in the
Kelly (log-utility) portfolio

hK(t) = (ΣΣ′)−1
(
â+ ÂX(t)

)
(3.17)

and the money market asset. Moreover, if an investor has a risk sensitivity
γ, the proportion of the Kelly portfolio will equal 1

1−γ and − γ
1−γ .

3.2 Example: The Relevance of Valuation Factors

In this section, we compare the investment strategies in the ICAPM and the
Merton model in a simple setting with m = 1 risky asset and n = 1 factor.
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3.2.1 Setting

The single factor is a short term interest rate behaving according to the
Vasicek model (see [45]):

dX(t) = (b0 − b1X(t))dt+ ΛdW (t), X(0) = x (3.18)

or equivalently

dX(t) = b1

(
b0
b1
−X(t)

)
dt+ ΛdW (t),

where Λ is a 2-element row vector and W (t) = (W1(t),W2(t))
′ is a two-

dimensional Brownian motion where W1(t) is independent from W2(t).

The money market account pays the short term rate, and therfore

dS0(t)

S0(t)
= X(t)dt, S0(0) = s0 (3.19)

The dynamics of the stock is

dS(t)

S(t)
= (a+AX(t))dt+ ΣdW (t), S(0) = s, (3.20)

where Σ is a 2-element row vector. Typically, we would view W1(t) as the
noise associated with the short term interest rate so that Λ = (λ, 0). The
Brownian motion W2(t) would then capture the idiosyncratic noise in the
share. In fact, we could define a new Brownian motion WS(t) as

WS(t) = ρW1(t) +
√

1− ρ2W2(t)

where ρ is the correlation coefficient of WS(t) and W1(t), and express the
dynamics of the stock as

dS(t)

S(t)
= (a+AX(t))dt+ σSdWS(t), S(0) = s, (3.21)

Based on Theorem 3.2, the investor will allocate a fraction 1
1−γ of his/her

wealth to the Kelly portfolio with risky asset allocation

hK(t) = (ΣΣ′)−1
(
a+ ÂX(t)

)
and take a short position amounting to a fraction 1

1−γ of his/her wealth in
the intertemporal hedging portfolio

hI(t) = −(ΣΣ′)−1ΣΛ′ (Q(t)X(t) + q(t))
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We compare the ICAPM with a naive implementation of the Merton
model. The Merton model ignores the valuation factor X(t). One possibility
would be to set the risk-free rate r to the long-term average money market
rate b0

b1
so that

dS0(t)

S0(t)
= rdt =

b0
b1
dt, S0(0) = s0 (3.22)

Similarly, the drift of the stock could be set to a long-term average µ :=
a+A b0

b1
, so that

dS(t)

S(t)
= µdt+ σSdWS(t), S(0) = s, (3.23)

Based on Theorem 2.14

hK(t) = (ΣΣ′)−1 (µ− r1)

In equilibrium, that is when X(t) = E[X(t)] =: X̄(t), the composition
of the Kelly portfolio in the ICAMP and in the classical Merton model will
coincide

h̄K(t) = (ΣΣ′)−1
(
a+ ÂX̄(t)

)
= (ΣΣ′)−1 (µ− r1)

so that the only difference in terms of allocation lies in the intertemporal
hedging portfolio.

3.2.2 Numerical Example

We consider an example with b = 0.04, B = −1 and Λ = (0.08, 0), a = 0.056,
A = 1.1 and Σ = (0.20), meaning that the noise related to the asset is
perfectly positively correlated with the noise from the factor. A perfect
correlation between asset and factor noise is unrealistic. However, this con-
dition will help us observe more clearly the behaviour of the intertemporal
hedging portfolio. Indeed, the role of the intertemporal hedging portfolio is
to use the covariance structure of the asset and factors in order to adjust
the risk of the portfolio. If the assets and factor noise are uncorrelated, the
intertemporal hedging portfolio has no use and the investor will invest his
money in the money market account, as shown in Corollary 3.3.

In equilibrium, the (full) Kelly portfolio is invested at 150% in the stock,
regardless of whether we are considering the classical Merton model or the
ICAPM. Figure 1 displays the allocation of the intertemporal hedging port-
folio to the risky stock for various levels of risk aversion. The proportion of
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Figure 1: Short position of the Intertemporal Hedging Portfolio (IHP) in the
stock as a function of time to investment horizon for various levels of risk
aversion (γ = -RSC) in the case of perfectly correlated asset and factors.

the intertemporal hedging portfolio short in the stock is modest: it reaches
1.20% for a risk aversion γ = −2 and stands at 0.56% for a risk aversion
γ = −8. With 10 years left on the investment horizon, the short position is
at its highest. It then declines at an accelerating rate as the horizon draws
near, to finally reach zero at the end of the horizon. This is in sharp contrast
with the myopic Kelly portfolio which remains fully invested regardless of
the investment horizon. Finally, the short position is inversely related to
the aversion: the higher the risk aversion, the smaller the short position.

As a result of the difference in magnitude between the Kelly portfolio
and the intertemporal hedging portfolio, the proportion of the investor’s to-
tal wealth invested in the risky stock remains relatively constant through
the investment horizon, as shown in Figure 2.

As the value X(t) of the factor varies away from equilibrium conditions,
the investment of the Kelly portfolio in the ICAPM will deviate from the

13



0.00%	  

20.00%	  

40.00%	  

60.00%	  

80.00%	  

100.00%	  

120.00%	  

140.00%	  

160.00%	  

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

Pr
op

or
%o

n	  
of
	  th

e	  
in
ve
st
or
's	  
w
ea
lth

	  in
ve
st
ed

	  in
	  th

e	  
st
oc
k	  
	  

Time	  to	  investement	  horizon	  (years)	  

Propor%on	  of	  the	  investor's	  wealth	  invested	  in	  the	  stock	  as	  a	  func%on	  of	  
%me	  to	  investment	  horizon	  

(Perfectly	  Correlated	  Asset	  and	  Factors)	  

RSC	  =	  0	  (Full	  Kelly)	   RSC	  =	  2	   RSC	  =	  4	   RSC	  =	  6	   RSC	  =	  8	  

Figure 2: Proportion of the investor’s wealth in the stock as a function of
time to investment horizon for various levels of risk aversion (γ = -RSC) in
the case of perfectly correlated asset and factors.
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Figure 3: Proportion of the Kelly portfolio invested in the stock as a function
of the value of the underlying factor X(t) in the case of perfectly correlated
asset and factors.

150% level of the Merton model. Figure 3 shows that in the ICAPM, the
allocation of the Kelly portfolio increases linearly with the factor level. The
equation of the line is hK = 1.40 + 2.5×x, implying that the Kelly portfolio
is highly leveraged.

The proportion of the intertemporal hedging portfolio invested in the
stock increases with the factor level, as a result of the perfect correlation
between the factor noise, although it still remains modest even with a 10-
year investment horizon (see Figure 4). Finally, the overall asset allocation
is significantly influenced by both the increase in leverage in the Kelly port-
folio resulting from a rise in the factor level and the dilution of the Kelly
portfolio associated with an increase in the risk aversion (see Figure 5).
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4 Benchmarked Investment Management

4.1 The Model

Davis and Lleo [11] and [12] study a benchmarked asset management us-
ing risk-sensitive control. Merton’s ICAPM with no consumption and a
power utility function is closely related to risk-sensitive asset management
(see [11] and [12]) and therefore to Linear Exponential-of-Quadratic Gaus-
sian (LEQG) stochastic control. The results obtained in [11] and [12] readily
extend to a benchmarked version of Merton’s ICAPM, up to some minor
changes in the value function.

The objective of a benchmarked investor is to outperform a given invest-
ment benchmark, such as the S&P 500 or the Salomon Smith Barney World
Government Bond Index. Davis and Lleo [11] model the evolution of the
benchmark level using the SDE

dL(t)

L(t)
= (c+ C ′X(t))dt+ ς ′dW (t), L(0) = l (4.1)

where c is a scalar constant, C is a n-element column vector and ς is a
N -element column vector. The objective of the investor is to maximize the
expected utility of terminal outperformance J(t, x, h;T, γ):

J(t, x, h;T, γ) = E [U(FT )] = E

[
F γT
γ

]
= E

[
eγ lnFT

γ

]
where F (t, x;h) is defined as the (log) excess return of the investor’s portfolio
over the return of the benchmark, i.e.

F (t, x, h) := ln
V (t, x, h)

L(t, x, h)

By Itô’s lemma, the log of the excess return in response to a strategy h
is

F (t, x;h) = ln
v

l
+

∫ t

0
d lnV (s)−

∫ t

0
d lnL(s)

= ln
v

l
+

∫ t

0

(
a0 +A′0X(s) + h(s)′

(
â+ ÂX(s)

))
ds

−1

2

∫ t

0
h(s)′ΣΣ′h(s)ds+

∫ t

0
h(s)′ΣdW (s)

−
∫ t

0
(c+ C ′X(s))ds+

1

2

∫ t

0
ς ′ςds

−
∫ t

0
ς ′dW (s) (4.2)
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where

F (0, x;h) = f0 := ln
v

l

Following an appropriate change of measure along the line described in
the previous sections, the criterion function under the new measure can be
expressed as

I(t, , x, h;T, γ) =
fγ0
γ

Eh
t,x

[
exp

{
γ

∫ T

t
g(Xs, h(s); γ)ds

}]
where

g(x, h; γ) =
1

2
(1− γ)h′ΣΣ′h− a0 −A′0x− h′(â+ Âx)

+γh′Σς + (c+ C ′x) +
1

2
(1− γ) ς ′ς

The value function Φ for the auxiliary criterion function I(t, x;h;T, γ) is
defined as

Φ(t, x) = sup
h∈A(T )

I(t, x;h;T, γ) (4.3)

Solving the control problem, we find that the optimal investment policy
h∗(t) is given by

h∗ =
1

1− γ
(ΣΣ′)−1

(
â+ Âx+ γΣΛ′DΦ− γΣς

)
(4.4)

and the logarithmically-transformed value function Φ̃(t, x) = 1
γ ln Φ(t, x) is

still given by

Φ(t, x) = x′Q(t)x+ x′q(t) + k(t)

where Q(t) solves a n-dimensional matrix Riccati equation and q(t) solves
a n-dimensional linear ordinary differential equation.

The following fund separation theorem defines benchmarked fractional
Kelly strategies:

Theorem 4.1 (Benchmarked Mutual Fund Theorem). Given a time t and
a state vector X(t), any portfolio can be expressed as a linear combination of
investments into two “mutual funds” with respective risky asset allocations:

hK(t) = (ΣΣ′)−1
(
â+ ÂX(t)

)
hC(t) = (ΣΣ′)−1

[
Σς − ΣΛ′ (q(t) +Q(t)X(t))

]
(4.5)
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and respective allocation to the money market account given by:

hK0 (t) = 1− 1′(ΣΣ′)−1
(
â+ ÂX(t)

)
hC0 (t) = 1− 1′(ΣΣ′)−1

[
Σς − ΣΛ′ (q(t) +Q(t)X(t))

]
Moreover, if an investor has a risk aversion γ, the respective weights of each
mutual fund in the investor’s portfolio are equal to 1

1−γ and − γ
1−γ .

This result splits the benchmarked fractional Kelly strategy in three
“funds”:

1. An allocation of 1
1−γ to the Kelly portfolio. As γ → 0, this investors’s

allocation to the Kelly portfolio converges to 100% of his/her wealth,
implying that a Kelly investor will ignore the benchmark and focus solely
on growth maximization;

2. An allocation to the intertemporal hedging portfolio. Note that the in-
tertemporal hedging portfolio in the benchmarked case is subtly different
from its counterpart in the asset-only case. Indeed, the coefficient q solve
a slightly different linear ODE which includes terms related to the bench-
mark dynamics;

3. An allocation to a benchmark-tracking portfolio. The allocation of this
portfolio, (ΣΣ′)−1Σς, is in fact a projection of the benchmark risk on the
subspace spanned by asset risk, that is an unbiased estimator of a linear
relationship between asset risks and benchmark risk ς = Σ′u;

4.2 Example: Replicable Benchmark

We start with a similar setting as in Section 3.2, namely a one-factor model
where the single factor is a short term interest rate behaving according to
the Vasicek model:

dX(t) = (b0 − b1X(t))dt+ ΛdW (t), X(0) = x (4.6)

where Λ is now a 3-element row vector and W (t) = (W1(t),W2(t),W3(t))
′

is a three-dimensional Brownian motion. W1(t), W2(t) and W3(t) are in-
dependent standard Brownian motions on (Ω, {Ft} ,F ,P). For numerical
applications, we still take b = 0.04, B = −1 and Λ = (0.08, 0).

The money market account pays the short term rate, and therfore

dS0(t)

S0(t)
= X(t)dt, S0(0) = s0 (4.7)
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The investor can buy either of two stocks S1 and S2 with respective time-t
price S1(t) and S2(t). The dynamics of the price vector S(t) := (S1(t), S2(t))
is given by equation (3.2), that is

dS(t) = D (S(t)) (a+AX(t))dt+D (S(t)) ΣdW (t), S(0) = s,

In our example, we will take

a =

(
0.018
0.064

)

A =

(
1.3
0.9

)
and

Σ =

(
0.108 0.0523 0
0.064 0 0.196

)
Hence, the drift of stock S1 is more sensitive to changes in the factor than
the drift of stock S2. To understand the relation between the diffusion of
the stock price and the diffusion of the factor, we define two new Brownian
motions:

W 1
S(t) = ρ1W1(t) +

√
1− ρ21W2(t)

W 2
S(t) = ρ2W1(t) +

√
1− ρ22W3(t)

The Brownian motions W 1
S(t) and W 2

S(t) represent the respective noise as-
sociated with stock S1 and S2. They are correlated with the factor noise
W1(t), with correlation coefficient ρ1 = 0.9 and ρ2 = 0.2. Thus, stock S1
has a lower volatility and a higher correlation with the factor than stock S2.

The investor’s benchmark is an index with a 60% allocation to stock S1
and a 40% allocation to S2. The benchmark is therefore easily replicable.
Let wB = (60%, 40%)′ be the vector of benchmark weights, then the param-
eters of the benchmark’s SDE (4.1) are c = w′Ba, C = w′BA and ς = w′BΣ.

In equilibrium, that is when X(t) = X̄(t) = 0.04, the (full) Kelly port-
folio is invested at 168.83% in stock S1 and 131.71% in stock S2. The Kelly
portfolio is myopic: its allocation does not change as the investment horizon
changes. It only varies with the factor level. As expected, the allocation to
the benchmark replicating portfolio equals (ΣΣ′)−1Σς = (60%, 40%) = wB
irrespective of the time horizon or factor level: we can (and do) fully repli-
cate the benchmark. Figure 6 displays the allocation of the intertemporal
hedging portfolio to the two risky stock for various levels of risk aversion.
The proportion of the intertemporal hedging portfolio short in either stock
is still modest: it reaches 3.68% in stock S1 and 0.01% in stock S2 for a
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(b) Short position in Stock 2

Figure 6: Short position of the Intertemporal Hedging Portfolio (IHP) in
the stock as a function of time to investment horizon
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(b) Allocation to Stock 2

Figure 7: Proportion of the investor’s wealth in the stock as a function of
time to investment horizon for various levels of risk aversion (γ = -RSC)

risk aversion γ = −2. The evolution of the allocation is similar to what we
already observed in the asset only case: the short position is at its highest
level when the investment horizon is at 10 years, and it then declines at an
accelerating rate to finally reach zero at the end of the horizon. Figure 7
shows that the overall asset allocation is dominated by the Kelly portfolio at
low risk-aversion levels and by the benchmark replicating portfolio at high
levels of risk aversion. As a result, the proportion of the investor’s total
wealth invested in the stocks remains relatively constant through the invest-
ment horizon.

Keeping the time horizon fixed at ten years, and letting the factor level
vary from 0 to 20%, we see that the allocation of the Kelly portfolio to the
two stocks evolves in opposite directions (see Figure 8). The asset allocation
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hK1 and hK2 to the two stocks are an affine function of the factor level x:

hK1 = 0.7960 + 22.3066x

hK1 = 1.5134− 4.9071x (4.8)

Not that the sign of the slope and of the intercept reflect the sign of the
entries of vectors Â and â.In our example, Â1 = 0.3 while Â2 = −0.1.

The allocation to the benchmark replicating portfolio remains fixed at
60% in stock S1 and 40% in stock S2. The proportion of the intertemporal
hedging portfolio short stock S1 and S2 increases with the factor level (see
Figure 8). The short position for the highly correlated stock S1 reaches
13.85% for a factor level of 20% and a risk aversion γ = −2. By comparison,
the short position in less correlated stock S2 is only 0.36% for the same risk
factor and risk aversion levels. Overall, the asset allocation is dominated by
a combination of the Kelly portfolio and the benchmark replicating portfolio
(see Figure 9). Within the range of factor values considered, the allocation
to both stocks remains above the benchmark level. This implies that the
investor will use leverage, even at fairly high risk aversion levels.

5 ICAPM with Partial Observation

Davis and Lleo [13] propose an extension to the case where the factor pro-
cess X(t) is not directly observed and the asset allocation strategy ht must
be adapted to the filtration FSt = σ{Si(u), 0 ≤ u ≤ t, i = 0, . . . ,m} gen-
erated by the asset price processes alone. In the partial observation case,
the pair of processes (X(t), Y (t)), where Yi(t) = logSi(t), takes the form
of the ‘signal’ and ‘observation’ processes in a Kalman filter system, and
consequently the conditional distribution of X(t) is normal N(X̂(t), P (t))
where X̂(t) = E[X(t)|FSt ] satisfies the Kalman filter equation and P (t) is a
deterministic matrix-valued function. By using this idea we can obtain an
equivalent form of the problem in which X(t) is replaced by X̂(t) and the
dynamic equation (3.3) by the Kalman filter. Optimal strategies take the
form h(t, X̂(t)). This very old idea in stochastic control goes back at least
to Wonham [46].

To simplify the presentation of the idea, we will assume that A0, im-
plying the short-term interest rate is constant. The more general case is
outlined in Davis and Lleo [13]. In the partial obsrevation case we need to
assume that the initial value X0 of the factor process is a normal random
vector N(m0, P0) with known mean m0 and covariance P0, and is indepen-
dent of the Brownian motion W .
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Figure 9: Short position of the Intertemporal Hedging Portfolio (IHP) in
the stock as a function of the value of the underlying factor X(t)
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Figure 10: Proportion of the investor’s wealth in the stock as a function of
the value of the underlying factor X(t)

The observation process is the log price process Y (t) = lnSt:

dYi(t) =

[
(a+AX(t))i −

1

2
ΣΣ′ii

]
dt+

N∑
k=1

σikdWk(t),

Yi(0) := yi(0) = lnSi(0) (5.1)

The processes (X(t), Y (t)) and the filtering equations are standard:

Proposition 5.1 (Kalman Filter). The conditional distribution of X(t)
given FSt is N(X̂(t), P (t)), calculated as follows.

(i) The innovations process U(t) ∈ Rm defined by

dU(t) =
(
ΣΣ′

)−1/2
(dY (t)−AX̂(t)dt), U(0) = 0 (5.2)

is a vector Brownian motion.

(ii) X̂(t) is the unique solution of the SDE

dX̂(t) = (b+BX̂(t))dt+
(
ΛΣ′ + P (t)A′

) (
ΣΣ′

)−1/2
dU(t), X̂(0) = m0.

(5.3)

(iii) P (t) is the unique non-negative definite symmetric solution of the ma-
trix Riccati equation

Ṗ (t) = ΛΞΞ′Λ′ − P (t)A′
(
ΣΣ′

)−1
AP (t) +

(
B − ΛΣ′

(
ΣΣ′

)−1
A
)
P (t)

+P (t)
(
B′ −A′

(
ΣΣ′

)−1
ΣΛ′

)
, P (0) = P0

where Ξ := I − Σ′ (Σ′Σ)−1 Σ.
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The Kalman filter has replaced our initial state process X(t) by an esti-
mate X̂(t) with dynamics given in (5.3). To recover the asset price process,
we use (5.1) together with (5.2) to obtain the dynamics of Y (t)

dYi(t) =
[
a+AX̂(t)

]
i
dt− 1

2
ΣΣ′iidt+

N∑
k=1

[(
ΣΣ′

)1/2]
ik
dUk(t)

(5.4)

and then apply Itô to Si(t) = expYi(t) to get

dS(t) = D (S(t)) (a+AX̂(t))dt+D (S(t))
(
ΣΣ′

)1/2
dU(t)

Si(0) = si, i = 1, . . . ,m (5.5)

Now we can solve the stochastic control problem with partial observa-
tion as in Section 3 simply by replacing the original asset price description
(3.2) by (5.5), and the factor process description (3.3) by the Kalman filter
equation (5.3) (see [13] for the full detail). The optimal investment policy
h∗(t)

h∗(t) =
1

1− γ
(
ΣΣ′

)−1 [
â+AX̂(t) + γ

(
ΛΣ′ + P (t)A′

)′ (
Q(t)X̂(t) + q(t)

)]
(5.6)

where Q(t) satisfies a matrix Riccati equation and q(t) satisfies a vector lin-
ear ODE.

The following fund separation theorem defines fractional Kelly strategies
subject to partial observation:

Corollary 5.2 (Fund Separation Theorem - Partial Observation). Any
portfolio can be expressed as a linear combination of investments into two
funds with respective risky asset allocations:

hK(t) = (ΣΣ′)−1
(
â+AX̂(t)

)
hIPO(t) = −(ΣΣ′)−1

(
ΣΛ′ +AP (t)

) (
Q(t)X̂(t) + q(t)

)
(5.7)

where P (t) solves the matrix Riccati equation (5.4) and hIPO(t) can be
viewed as a full allocation to two risky portfolios, an intertemporal portfolio
hI , and a partial observation portfolio hPO:

hI(t) = −(ΣΣ′)−1ΣΛ′
(
Q(t)X̂(t) + q(t)

)
hPO(t) = −(ΣΣ′)−1AP (t)

(
Q(t)X̂(t) + q(t)

)
(5.8)

The funds have respective allocation to the money market account given by

hK0 (t) = 1− 1′hK(t)

hIPO0 (t) = 1 + 1′hIPO(t)
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Moreover, if an investor has a risk aversion γ, then the respective weights
of each mutual fund in the investor’s portfolio equal 1

1−γ and − γ
1−γ , respec-

tively.

This result splits the benchmarked fractional Kelly strategy in three
“funds”:

1. An allocation of 1
1−γ to the Kelly portfolio subject to partial observation,

that is with the Kalman estimate X̂(t) instead of the true value X(t);

2. An allocation to the intertemporal hedging portfolio subject to partial
observation. Here again the intertemporal hedging portfolio in the par-
tial observation case is subtly different from its counterpart in the full
observation case;

3. An allocation of to a partial observation portfolio;

6 Fractional Kelly Strategies in a Jump-Diffusion
Setting

Optimal investment and consumption problems in a jump diffusion setting
have been an active area of research since Merton [33] introduced the possi-
bility of jumps in asset prices. Investigations have tended to concentrate on
two axes: the mathematical resolution of the investment problem, and the
economic implications of the jumps. Mathematical research has generally
focused on the resolution of the HJB partial integro-differential equation, to
the detriment of an analysis of the optima asset allocation. Recent references
include Øksendal and Sulem [36], Barles and Imbert [2] and Bouchard and
Touzi [7] in the general context of jump-diffusion control, as well as Davis
and Lleo [15] [16] [14] in the context of risk-sensitive asset management. A
notable exception, Aı̈t-Sahalia, Cacho-Diaz and Hurd [1] proposed a method
based on orthogonal decompositions to solve jump-diffusion asset allocation
problems. In an infinite-horizon setting and under specific assumptions on
the jump structure, they derive an analytical solution and a fund separation.

Financial economics research has used jumps to model to model market
events and systemic shocks. Although the emphasis is decidedly on invest-
ment strategies, this stream of investigation generally takes place in specific
models and tends to rely on numerical analysis rather than a mathematical
derivation. Liu, Longstaff and Pan [24] use the event risk model proposed
by Duffie Pan and Singleton [17] to study the impact of a jump in asset
prices and volatility on investment policies. They find that the joint risk of
an increase in volatility and of a jump in asset prices lead to conservative
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investment strategies with limited leveraged and short positions. Das and
Uppal [10] model asset prices as jump-diffusion processes to investigate the
impact of systemic risk, embodied in an appropriately calibrated jump com-
ponent, on asset allocations. They conclude that the impact of a systemic
event has less to do with reduced diversification benefits than with the large
losses leveraged investors experience.

Somewhere in between, Davis and Lleo [13] consider two classes of jump-
diffusion factor models. The first has affine drift, constant diffusion and
jumps in asset prices only. The second class of models accommodates factor
dependent drift and diffusion as well as jumps in factor levels. For clarity,
we will only present the affine model with diffusion factors in this section.

6.1 Setting

Let (Ω, {Ft} ,F ,P) be the underlying probability space. On this space is
defined an RM -valued (Ft)-Brownian motion W (t) with components Wk(t),
k = 1, . . . ,M . Moreover, let (Z,BZ) be a Borel space2. Let p be an (Ft)-
adapted σ-finite Poisson point process on Z whose underlying point functions
are maps from a countable set Dp ⊂ (0,∞) into Z. Define

Zp := {U ∈ B(Z),E [Np(t, U)] <∞ ∀t} (6.1)

where Np(dt, dz) is the Poisson random measure on (0,∞)×Z induced by p.

Our analysis focuses on stationary Poisson point processes of class (QL)
with associated Poisson random measure Np(dt, dz). The class (QL) is de-
fined in [19] (Definition II.3.1 p. 59) as

Definition 6.1. An (Ft)-adapted point process p on (Ω,F ,P) is said to
be of class (QL) with respect to (Ft) if it is σ-finite and there exists N̂p =(
N̂p(t, U)

)
such that

(i.) for U ∈ Zp, t 7→ N̂p(t, U) is a continuous (Ft)-adapted increasing
process;

(ii.) for each t and a.a. ω ∈ Ω, U 7→ N̂p(t, U) is a σ-finite measure on
(Z,B(Z));

(iii.) for U ∈ Zp, t 7→ Ñp(t, U) = Np(t, U)− N̂p(t, U) is an (Ft)-martingale;

The random measure
{
N̂p(t, U)

}
is called the compensator of the point

process p.

2Z is a Polish space and BZ is the Borel σ-field
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Because the Poisson point processes we consider are stationary, then
their compensators are of the form N̂p(t, U) = ν(U)t where ν is the σ-finite
characteristic measure of the Poisson point process p.

Finally, for notational convenience, we fix throughout the paper a set
Z0 ∈ BZ such that ν(Z\Z0) < ∞ and define the Poisson random measure
N̄p(dt, dz) as

N̄p(dt, dz)

=

{
Np(dt, dz)− N̂p(dt, dz) = Np(dt, dz)− ν(dz)dt =: Ñp(dt, dz) if z ∈ Z0

Np(dt, dz) if z ∈ Z\Z0

The dynamics of the n factors X(t) and of the wealth invested in the
money market account S0(t) are the same as in the diffusionc ase:

dX(t) = (b+BX(t))dt+ ΛdW (t), X(0) = x (6.2)

where X(t) is the Rn-valued factor process with components Xj(t) and b ∈
Rn, B ∈ Rn×n and ΛRn×M ,

dS0(t)

S0(t)
=
(
a0 +A′0X(t)

)
dt, S0(0) = s0 (6.3)

where a0 ∈ R is a scalar constant, A0 ∈ Rn is a n-element column vector
and throughout the paper x′ denotes the transpose of the matrix or vector x.

The securities prices can exhibit jumps: let Si(t) denote the price at time
t of the ith security, with i = 1, . . . ,m. The dynamics of risky security i can
be expressed as:

dSi(t)

Si(t−)
= (a+AX(t))idt+

N∑
k=1

σikdWk(t) +

∫
Z
ηi(z)N̄p(dt, dz),

Si(0) = si, i = 1, . . . ,m (6.4)

where a ∈ Rm, A ∈ Rm×n, Σ := [σij ] , i = 1, . . . ,m, j = 1, . . . ,M and
γ(z) ∈ Rm satisfying Assumption 6.2:

Assumption 6.2. η(z) ∈ Rm satisfies

−1 ≤ ηmini ≤ ηi(z) ≤ ηmaxi < +∞, i = 1, . . . ,m

and

−1 ≤ ηmini < 0 < ηmaxi < +∞, i = 1, . . . ,m
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for i = 1, . . . ,m. Furthermore, define

S := supp(ν) ∈ BZ

and
S̃ := supp(ν ◦ γ−1) ∈ B (Rm)

where supp(·) denotes the measure’s support, then we assume that
∏m
i=1[γ

min
i , γmaxi ]

is the smallest closed hypercube containing S̃.

In addition, the vector-valued function γ(z) satisfies:∫
Z0

|η(z)|2ν(dz) <∞ (6.5)

Note that Assumption 6.2 requires that each asset has, with positive
probability, both upward and downward jump. The effect of this assump-
tion is to bound the space of controls. Relation (6.5) is a standard condition.
See Definition II.4.1 in Ikeda and Watanabe [19] 3.

Define the set J as

J :=
{
h ∈ Rm : −1− h′ψ < 0 ∀ψ ∈ S̃

}
(6.6)

For a given z, the equation h′γ(z) = −1 describes a hyperplane in Rm. J
is a convex subset of Rm for all (t, x) ∈ [0, T ]× Rn.

Let Gt := σ((S(s), X(s)), 0 ≤ s ≤ t) be the sigma-field generated by the
security and factor processes up to time t.

Definition 6.3. An Rm-valued control process h(t) is in class H if the
following conditions are satisfied:

1. h(t) is progressively measurable with respect to {B([0, t])⊗ Gt}t≥0 and
is càdlàg;

2. P
(∫ T

0 |h(s)|2 ds < +∞
)

= 1, ∀T > 0;

3. h′(t)γ(z) > −1, ∀t > 0, z ∈ Z, a.s. dν.

Define the set K as

K := {h ∈ H : h ∈ J for a.a.t} (6.7)

Definition 6.4. A control process h(t) is in class A(T ) if the following
conditions are satisfied:

3In [19], FP and F2,loc
P are respectively given in equations II(3.2) and II(3.5)
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1. h ∈ H;

2. EχhT = 1 where χht , t ∈ (0, T ], is the Doléans exponential defined as

χht := exp

{
γ

∫ t

0
h(s)′ΣdWs −

1

2
γ2
∫ t

0
h(s)′ΣΣ′(h(s)ds

+

∫ t

0

∫
Z

ln (1−G(z, h(s))) Ñ(ds, dz)

+

∫ t

0

∫
Z
{ln (1−G(z, h(s))) +G(z, h(s))} ν(dz)ds

}
,

(6.8)

and

G(z, h) = 1−
(
1 + h′η(z)

)γ
(6.9)

Definition 6.5. We say that a control process h(t) is admissible if h(t) ∈
A(T ).

Taking this budget equation into consideration, the wealth, V (t) of the
investor in response to an investment strategy h(t) ∈ H, follows the dynam-
ics

dV (t)

V (t−)
=
(
a0 +A′0X(t)

)
dt+ h′(t)

(
â+ ÂX(t)

)
dt+ h′(t)ΣdWt +

∫
Z
h′(t)η(z)N̄p(dt, dz)

(6.10)

where â := a − a01, Â := A − 1A′0, 1 ∈ Rm denotes the m-element unit
column vector and with initial endowment V (0) = v.

6.2 Control Problem

The objective of an investor is to maximize the expected utility of terminal
wealth over a fixed time horizon T :

J(t, h;T, γ) = E [U(VT )] = E

[
V γ
T

γ

]
= E

[
eγ lnVT

γ

]
By Itô,

eγ lnV (t) = vγ exp

{
γ

∫ t

0
g(Xs, h(s))ds

}
χht (6.11)

where

g(x, h) = −1

2
(1− γ)h′ΣΣ′h+ a0 +A′0x+ h′

(
â+ Âx

)
+

∫
Z

{
1

γ

[(
1 + h′η(z)

)γ − 1
]

+ h′η(z)1Z0(z)

}
ν(dz)

(6.12)
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and the Doléans exponential χht is given by (6.8).

Let Ph be the measure on (Ω,FT ) defined via the Radon-Nikodým deriva-
tive

dPh
dP

:= χhT (6.13)

For a change of measure to be possible, we must ensure that the following
technical condition holds:

G(z, h(s)) < 1

This condition is satisfied iff

h′(s)η(z) > −1 (6.14)

a.s. dν, which was already required for h(t) to be in class H (Condition
3 in Definition 6.3). Thus Ph is a probability measure for h ∈ A(T ). For
h ∈ A(T ),

Moreover,

W h
t = Wt − γ

∫ t

0
Σ′h(s)ds

is a standard Ph-Brownian motion and we define the Ph-compensated Pois-
son random measure by∫ t

0

∫
Z0

Ñh(ds, dz) =

∫ t

0

∫
Z0

N(ds, dz)−
∫ t

0

∫
Z0

{1−G(z, h(s))} ν(dz)ds

=

∫ t

0

∫
Z0

N(ds, dz)−
∫ t

0

∫
Z0

{(
1 + h′η(z)

)γ}
ν(dz)ds

As a result, X(s), 0 ≤ s ≤ t satisfies the SDE:

dX(s) = f(X(s), h(s))ds+ ΛdW h
s

(6.15)

where

f(x, h) := b+Bx+ γΛΣ′h (6.16)

Applying the change of measure argument, we obtain the criterion func-
tion under the measure Ph:

I(t, x, h;T ; γ) =
vγ

γ
Eh
t,x

[
exp

{
γ

∫ T

t
g(Xs, h(s))ds

}]
(6.17)
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The value function Φ for the auxiliary criterion function I(t, x, h;T ; γ)
is defined as

Φ(t, x) = inf
h∈A

I(t, x, h;T ; γ) (6.18)

The corresponding HJB PIDE is

∂Φ

∂t
(t, x) +

1

2
tr
(
ΛΛ′D2Φ(t, x)

)
+H(x,Φ, DΦ) (6.19)

subject to terminal condition

Φ(T, x) =
vγ

γ
(6.20)

where for r ∈ R, p ∈ Rn

H(x, r, p) = inf
h∈J

{
f(x, h)′p− γg(x, h)r

}
(6.21)

In this setting, the change of measure argument has reduced the problem
to solving a stochastic control problem in the factor process, which has no
jumps. As a result, we only need to solve a parabolic PDE, not a Partial
Integro-Differential Equation (PIDE), which makes it easier to show that
the HJB PDE admits a unique classical solution (see [15] for the full detail).

To obtain the optimal control we will introduce the associated risk-
sensitive value function Φ̃(t, x) := 1

γ ln Φ(t, x) with associated HJB PIDE

∂Φ̃

∂t
(t, x) + sup

h∈J
Lh(x,DΦ̃, D2Φ̃) = 0 (6.22)

where

Lh (x, p,M) = f(x, h)′p+
1

2
tr
(
ΛΛ′M

)
+
γ

2
p′ΛΛ′p− g(x, h)

(6.23)

and subject to the terminal condition

Φ̃(T, x) = ln v − 1

γ
ln γ, x ∈ Rn. (6.24)

The supremum in (6.22) can be expressed as

sup
h∈Rm

Lh (x, p,M)

= (b+Bx)′p+
1

2
tr
(
ΛΛ′M

)
+
γ

2
p′ΛΛ′p+ a0 +A0x

+ sup
h∈J

{
1

2
(γ − 1)h′ΣΣ′h+ γh′ΣΛ′p+ h′

(
â+ Âx

)
+

1

γ

∫
Z

{[(
1 + h′η(z)

)γ − 1
]
− γh′η(z)1Z0(z)

}}
(6.25)
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Proposition 6.6. The supremum in (6.22) - (6.23) admits a unique Borel
measurable maximizer ĥ(t, x, p) for (t, x, p) ∈ [0, T ]× Rn × Rn.

Proof. See Section 3.3 in [15].

6.3 Fractional Kelly Strategy

The basic idea in a Fund Separation Theorem is that any admissible portfolio
h(t) satisfying Definition 6.4 can be expressed as a linear combination of two
(or more) portfolios. For example, one could find two portfolios A and B
with respective asset allocations hA and hB such that

h(t) = wAh
A(t) + (1− wA)hB(t)

This decomposition is not unique. Focusing on optimal controls h∗(t) only,
we could take wA = 1

1−γ to guarantee a decomposition between the Kelly

portfolio hK and an intertemporal portfolio hIγ

h∗(t) =
1

1− γ
hK(t) +

γ

γ − 1
hIγ(t)

The intertemporal hedging portfolio hIγ depends indirectly on the risk aver-
sion level γ and as such is not universal.

Theorem 6.7 (Fund Separation Theorem in a Jump-Diffusion Setting).
The optimal asset allocation for an investor with a risk aversion γ can be
expressed as a linear combination of an investment in the Kelly criterion
(log-utility) portfolio and in an intertemporal hedging portfolio:

h∗(t) =
1

1− γ
hK(t)− γ

1− γ
hI(t)

where the risky allocation hK to the Kelly criterion (log-utility) portfolio
solves the fixed point problem

h =
(
ΣΣ′

)−1 [(
â+ Âx

)
+

∫
Z

{
η(z)

1 + h′η(z)
− η(z)1Z0(z)

}
ν(dz)

]
(6.26)

and the risky allocation to the intertemporal hedging portfolio hIγ satisfies:

hIγ(t) =
γ − 1

γ
h∗(t)− 1

γ
hK(t)
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The respective allocation to the money market account for each of the
two funds are given by

hK0 (t) = 1− hK(t)

hI0(t) = 1− hIγ(t)

Proof. Consider the auxiliary function ` defined as

`(h;x, p) =
1

2
(1− γ)h′ΣΣ′h− γh′ΣΛ′p− h′

(
â+ Âx

)
−1

γ

∫
Z

{[(
1 + h′η(z)

)γ − 1
]
− γh′η(z)1Z0(z)

}
ν(dz)

(6.27)

for h ∈ J , x ∈ Rn, p ∈ Rn.

A Taylor expansion of the integral term 1
γ

∫
Z {[(1 + h′η(t, z))γ − 1]} ν(dz)

around h = 0 yields

1

γ

∫
Z

{[(
1 + h′η(z)

)γ − 1
]}
ν(dz)

=

∫
Z

{
h′η(z) +

γ − 1

2

(
h′η(z)

)2
+

(γ − 1)(γ − 2)

3!

(
h′η(z)

)3
+ . . .

+
(γ − 1)(γ − 2)...(γ − 1)(γ − k + 1)

k!

(
h′η(z)

)k
+ . . .

}
ν(dz)

Taking the limit as γ → 0, we obtain:

lim
γ→0

1

γ

∫
Z

{[(
1 + h′η(z)

)γ − 1
]}
ν(dz) =

∫
Z

{
ln
[
1 + h′η(z)

]}
ν(dz)

We now define the function `K(h;x, p) as the limit of ` as γ → 0:

`K(h;x, p) = lim
γ→0

`(h;x, p)

=
1

2
h′ΣΣ′h− h′

(
â+ Âx

)
−
∫
Z

{
ln
[
1 + h′η(z)

]
− h′η(t, z)1Z0(z)

}
ν(dz)

(6.28)

for h ∈ Rm, x ∈ Rn and p ∈ Rn.

The Kelly allocation is the unique minimizer of (6.28). Applying the
first order condition, we conclude that hk satisfies

∂`K

∂h
= 0

⇔ ΣΣ′h−
(
â+ Âx

)
−
∫
Z

{
η(z)

1 + h′η(z)
− η(z)1Z0(z)

}
ν(dz) = 0

⇔ h =
(
ΣΣ′

)−1 [(
â+ Âx

)
+

∫
Z

{
η(z)

1 + h′η(z)
− η(z)1Z0(z)

}
ν(dz)

]
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It is difficult to get much more intuition regarding the behaviour of the
intertemporal hedging portfolio due to its dependence on the risk-aversion γ,
the asset price jumps and the value function Φ̃. Practically, one can estimate
the intertemporal hedging portfolio through numerical methods such as a
policy improvement scheme (see Bellman [4], Fleming and Richel [18] and
Davis and Lleo [15]) or a finite difference method (see for example Kushner
and Dupuis [22]). Davis and Lleo [13] show how to adapt a policy improve-
ment scheme to compute numerically the allocation to the intertemporal
hedging portfolio.

Corollary 6.8 (Three Fund Separation Theorem in a Jump-Diffusion Set-
ting). The optimal asset allocation for an investor with a risk aversion
γ can be expressed as a linear combination of an investment in the Kelly
criterion (log-utility) portfolio and in an intertemporal hedging portfolio:

h∗(t) =
1

1− γ
hK(t)− γ

1− γ
hI(t)

The risky allocation hK to the Kelly criterion (log-utility) portfolio solves
the fixed point problem

h =
(
ΣΣ′

)−1 [(
â+ ÂX

)
+

∫
Z

{
η(z)

1 + h′η(z)
− η(z)1Z0(z)

}
ν(dz)

]
(6.29)

Alternatively, the risky allocation hK to the Kelly criterion (log-utility) port-
folio can be expressed as a decomposition bewteen the standard Kelly alloca-
tion hKD and a jump-related portfolio hKJ :

hK = hKD + hKJ (6.30)

where the standard Kelly allocation hKD is given by

hKD =
(
â+ ÂX

)
(6.31)

and the jump-related portfolio hKJ solves the fixed point problem

h =
(
ΣΣ′

)−1 ∫
Z

{
η(z)

1 + h′η(z)
− η(z)1Z0(z)

}
ν(dz) + hKS

(6.32)
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The risky allocation to the intertemporal hedging portfolio hIγ can be ex-
pressed as

hIγ(t) = hγ(t) + h̄I(t)

that is an allocation between

i. the fully risk-averse portfolio h̄I ∈ S staisfying

hI(t) = −
(
ΣΣ′

)−1
ΣΛ′DΦ̃I (6.33)

and with S :=
{
h ∈ J : h′ψ ≥ 0 ∀ψ ∈ S̃

}
ii. the risk-aversion induced portfolio hγ.

The respective allocation to the money market account for each of the
two funds are given by

hK0 (t) = 1− hK(t)

hI0(t) = 1− hIγ(t)

7 Conclusion

In this chapter, we have presented an overview of some recent developments
related to Kelly investment strategies. In particular, we showed how the
definition of fractional Kelly strategies can be extended to guarantee opti-
mality when asset prices are no longer lognormally distributed. The key idea
is to get the definition of fractional Kelly strategies to correspond with the
fund separation theorem related to the problem at hand. In these instances,
fractional Kelly investment strategies appear as the natural solution for in-
vestors seeking to maximize the terminal power utility of their wealth.
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