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Recall from the first lecture

» A Coxeter group W is generated by a finite set S of
involutions, subject to braid relations. These braid
relations define the Artin-Tits group B(W) attached to
w.
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Recall from the first lecture

» A Coxeter group W is generated by a finite set S of
involutions, subject to braid relations. These braid
relations define the Artin-Tits group B(W) attached to
W. Example: W = &, B(W) = Artin braid group on
n strands.
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» A Mikado braid is an element x4 € B(W) associated to
x € W and a biclosed set of roots A.



Recall from the first lecture

» A Coxeter group W is generated by a finite set S of

involutions, subject to braid relations. These braid
relations define the Artin-Tits group B(W) attached to
W. Example: W = &,,, B(W) = Artin braid group on
n strands.

A reduced expression of x € W is a product

X =515y -+ sk where s; € S and k = {(x) is minimal.

A Mikado braid is an element x4 € B(W) associated to
x € W and a biclosed set of roots A. It is defined by
lifting a reduced expression s15, -+ - s, of x € W to

xa = 8{'s5’ - - - 8;*, where the exponents ¢; € {1} are
defined using a rule involving A.
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Recall from the first lecture

» A Coxeter group W is generated by a finite set S of

involutions, subject to braid relations. These braid
relations define the Artin-Tits group B(W) attached to
W. Example: W = &, B(W) = Artin braid group on
n strands.

A reduced expression of x € W is a product

X =515y -+ sk where s; € S and k = {(x) is minimal.

A Mikado braid is an element x4 € B(W) associated to
x € W and a biclosed set of roots A. It is defined by
lifting a reduced expression s15, -+ - s, of x € W to

xa = 8{'s5’ - - - 8;*, where the exponents ¢; € {1} are
defined using a rule involving A.
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If you are not familiar with the machinery of Coxeter /
Artin groups, just keep in mind the case W = G,
B(W) = B, and the topological description of Mikado
braids.
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Hecke algebra of a Coxeter system

» Let (W, S) be a Coxeter system. Let A := Z[v,v1].
The Hecke algebra H(W) of (W, S) if the (associative,
unital) A-algebra with free A-basis given by a set
{Hx | x € W} and multiplication defined as follows: for
xeW,seS we set
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The Hecke algebra H(W) of (W, S) if the (associative, R
unital) A-algebra with free A-basis given by a set Dyer's postiviy
{Hx | x € W} and multiplication defined as follows: for I

xe W, seS we set

Thomas Gobet

Hecke algebra of a

H H . Hxs If E(Xs) > E(X) Coxeter system
E T (vE=V)He + Hys i U(xs) < (x)



Hecke algebra of a Coxeter system

» Let (W, S) be a Coxeter system. Let A := Z[v,v1].
The Hecke algebra H(W) of (W, S) if the (associative,
unital) A-algebra with free A-basis given by a set
{Hx | x € W} and multiplication defined as follows: for
xeW,seS we set

B Hy. if £(xs) > ¢(x)
HXHS - { (V_l — V)HX + Hxs if E(XS) < E(X)

» The Hecke algebra H(W) is a deformation of the group
algebra of W over Z: by specializing v — 1 we just get
Z|W].
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Hecke algebra of a Coxeter system

» Let (W, S) be a Coxeter system. Let A := Z[v,v1].
The Hecke algebra H(W) of (W, S) if the (associative,
unital) A-algebra with free A-basis given by a set
{Hx | x € W} and multiplication defined as follows: for
xeW,seS we set

B Hy. if £(xs) > ¢(x)
HXHS - { (V_l — V)HX + Hxs if E(XS) < E(X)

» The Hecke algebra H(W) is a deformation of the group
algebra of W over Z: by specializing v — 1 we just get
Z|W].

» As a consequence of the definition, the Hs generate
H(W), are invertible and satisfy the braid relations of
w.
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Hecke algebra of a Coxeter system

» Let (W, S) be a Coxeter system. Let A := Z[v,v1].
The Hecke algebra H(W) of (W, S) if the (associative,
unital) A-algebra with free A-basis given by a set

{Hx | x € W} and multiplication defined as follows: for
xeW,seS we set

B Hy. if £(xs) > ¢(x)
HXHS - { (V_l — V)HX + Hxs if E(XS) < E(X)

The Hecke algebra H(W) is a deformation of the group
algebra of W over Z: by specializing v — 1 we just get
Z|W].

As a consequence of the definition, the H; generate
H(W), are invertible and satisfy the braid relations of
W. In particular, there is a group homomorphism
o:B(W)— H(W)*, s— Hs, s€S.
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» The are several subtle ways of ordering a Coxeter group.
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The Bruhat order on a Coxeter group

» The are several subtle ways of ordering a Coxeter group.
One which is central in Kazhdan-Lusztig theory is the
Bruhat order < on W':
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The Bruhat order on a Coxeter group

» The are several subtle ways of ordering a Coxeter group.

One which is central in Kazhdan-Lusztig theory is the
Bruhat order < on W: it is defined as the transitive
closure of the relation x < xt for all x € W,

te T =Uyew wSw! such that £(x) < £(xt)
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The Bruhat order on a Coxeter group

» The are several subtle ways of ordering a Coxeter group.

One which is central in Kazhdan-Lusztig theory is the
Bruhat order < on W: it is defined as the transitive
closure of the relation x < xt for all x € W,

te T =Uyew wSw! such that £(x) < £(xt)
(equivalently t ¢ N(x~1)).
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The Bruhat order on a Coxeter group

» The are several subtle ways of ordering a Coxeter group.

One which is central in Kazhdan-Lusztig theory is the
Bruhat order < on W: it is defined as the transitive
closure of the relation x < xt for all x € W,

te T =Uyew wSw! such that £(x) < £(xt)
(equivalently t ¢ N(x~1)).

Proposition

Let W be a Coxeter group, x,y € W. The following are
equivalent:
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The Bruhat order on a Coxeter group

» The are several subtle ways of ordering a Coxeter group.

One which is central in Kazhdan-Lusztig theory is the
Bruhat order < on W: it is defined as the transitive
closure of the relation x < xt for all x € W,

te T =Uyew wSw! such that £(x) < £(xt)
(equivalently t ¢ N(x~1)).

Proposition

Let W be a Coxeter group, x,y € W. The following are
equivalent:

1. We have x <y,
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The Bruhat order on a Coxeter group

» The are several subtle ways of ordering a Coxeter group.

One which is central in Kazhdan-Lusztig theory is the
Bruhat order < on W: it is defined as the transitive
closure of the relation x < xt for all x € W,

te T =Uyew wSw! such that £(x) < £(xt)
(equivalently t ¢ N(x~1)).

Proposition
Let W be a Coxeter group, x,y € W. The following are
equivalent:

1. We have x <y,

2. There is a reduced expression of y which has a reduced
expression of x as a subword,
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The Bruhat order on a Coxeter group

» The are several subtle ways of ordering a Coxeter group.

One which is central in Kazhdan-Lusztig theory is the
Bruhat order < on W: it is defined as the transitive
closure of the relation x < xt for all x € W,

te T =Uyew wSw! such that £(x) < £(xt)
(equivalently t ¢ N(x~1)).

Proposition
Let W be a Coxeter group, x,y € W. The following are
equivalent:
1. We have x <y,
2. There is a reduced expression of y which has a reduced
expression of x as a subword,
3. Every reduced expression of y has a reduced expression
of x as a subword.
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Example: W =63, S ={s1 =(1,2),50 = (2,3)},
T ={(1,2),(2,3),(1,3)}.
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The Bruhat order on a Coxeter group

Example: W =63, S={s1 =(1,2),52 =(2,3)},
T ={(1,2),(2,3),(1,3)}.

515251 = S25152

5152 5251

S1 2
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Example: W = &4. We represent a permutation x € G4 by
a line x(1)x(2)x(3)x(4).
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The Bruhat order on a Coxeter group

Example: W = &4. We represent a permutation x € G4 by
a line x(1)x(2)x(3)x(4).

4321

1234
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’H(W) — H(W) be the involution defined by
HX = Hx_—l' v=vlL
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Canonical bases

» Let 7: H(W) — H(W) be the involution defined by

He=H1, v=v"l
Theorem (Kazhdan-Lusztig, 1979)

> For every w € W, there is a unique C,, € H(W) such
that C), = C,, and C,, € Hy + > c\y VZ[v]H,.
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Canonical bases

» Let 7: H(W) — H(W) be the involution defined by

He=H1, v=v"l
Theorem (Kazhdan-Lusztig, 1979)

> For every w € W, there is a unique C,, € H(W) such
that C), = C,, and C,, € Hy + > c\y VZ[v]H,.

> For every w € W, there is a unique C,, € H(W) such
that C, = Cw and Gy € Hu + 3 ciy v IZIvTlH,.
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Canonical bases

» Let 7: H(W) — H(W) be the involution defined by

He=H1, v=v"l
Theorem (Kazhdan-Lusztig, 1979)

> For every w € W, there is a unique C,, € H(W) such
that C/, = C,, and C}, € H, + > _,, VZ[v]H,.

> For every w € W, there is a unique C,, € H(W) such
that C,, = C,, and C, € H,, + v IZIv=lH,.

y<w

y<w

» In fact the two sums above can be taken over all
elements lower than w for the Bruhat order.
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Canonical bases

» Let 7: H(W) — H(W) be the involution defined by

He=H1, v=v"l
Theorem (Kazhdan-Lusztig, 1979)

> For every w € W, there is a unique C,, € H(W) such
that ), = C,, and C,, € H, + > _,, VZ[V]H,.

> For every w € W, there is a unique C,, € H(W) such
that C, = Cy and Cy € Hy + 3, _,, v IZIv=lH,.

» In fact the two sums above can be taken over all
elements lower than w for the Bruhat order.

» The two sets {Cy twew and {C), }wew yield two bases
of H(W) called canonical bases.
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» Example: let s € S.
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» Example: let s € S. We have the relation
H? = (v=! — v)Hs + 1 which yields

H'=Hs 4+ (v—vY).
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» Example: let s € S. We have the relation algebras

H52 = (V_l — v)Hs + 1 which yields I1. Generalized
Kazhdan-Lusztig
polynomials and

Hs_l = HS + (V — \/_1)_ Dyer’s positivity
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Canonical bases

» Example: let s € S. We have the relation
H2 = (v7! — v)Hs + 1 which yields

H'=Hs 4+ (v—vY).
We want to calculate the element C/. We have
Cl=Hs+p=H'—(v—vH+p

for some p € vZ][v].
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Canonical bases

» Example: let s € S. We have the relation
H2 = (v7! — v)Hs + 1 which yields

H'=Hs 4+ (v—vY).
We want to calculate the element C/. We have
Cl=Hs+p=H'—(v—vH+p

for some p € vZ[v]. On the other hand by self-duality

we have
Cl=H'+p.
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» Example: let s € 5. We have the relation algebras

H? = (v=1 — v)Hs + 1 which yields I1. Generalized
Kazhdan-Lusztig

1 1 polynomials and

HS_ = HS + (V — v ) Dyer’s positivity

conjectures

Thomas Gobet

We want to calculate the element C/. We have

! -1 -1
Coc=Hs+p=H;"—(v—v " )+p
Kazhdan-Lusztig
polynomials

for some p € vZ[v]. On the other hand by self-duality

we have
Cl=H'+p.

Comparing the two equations we get

p—ﬁ:v—v_l.

Since p € vZ]|v] this forces p = v.
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» Example: let s € 5. We have the relation algebras

H? = (v=1 — v)Hs + 1 which yields I1. Generalized
Kazhdan-Lusztig

1 1 polynomials and

HS_ = HS + (V — v ) Dyer’s positivity
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We want to calculate the element C/. We have

! -1 -1
Coc=Hs+p=H;"—(v—v " )+p
Kazhdan-Lusztig
polynomials

for some p € vZ[v]. On the other hand by self-duality
we have

Cl=H'+p.
Comparing the two equations we get

p—ﬁ:v—v_l.

Since p € vZ][v] this forces p = v. Hence we have
Cl = Hs +v.



Coxeter system

Kazhdan-Lusztig
polynomials

Soergel bimodules

Proof of Dyer's
conjecture

DA



Hecke algebra of a
Coxeter system

Kazhdan-Lusztig
polynomials

Soergel bimodules

Proof of Dyer's
conjecture

DA



Mikado braids,
Soergel bimodules,
and positivity in
Hecke and

> Let C), = >_y<w hywHy. The polynomial hy ,, € Z[v] Temperley-Lieb

algebras
is a Kazhdan-Lusztig polynomial. I1. Generalized
Kazhdan-Lusztig
polynomials and
Dyer’s positivity
conjectures

Thomas Gobet
Hecke algebra of a
Coxeter system

Kazhdan-Lusztig
polynomials

Soergel bimodules

Proof of Dyer’s
conjecture

DA



Canonical bases

> Let G, = > -, hy,wHy. The polynomial hy ,, € Z[v]
is a Kazhdan-Lusztig polynomial.

» It is hard in general to compute hy ,,. They can be
computed inductively (with respect to the Bruhat
ordering). Closed formulas are known but complicated
in general.
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Canonical bases

> Let G, = > -, hy,wHy. The polynomial hy ,, € Z[v]
is a Kazhdan-Lusztig polynomial.

» It is hard in general to compute hy ,,. They can be
computed inductively (with respect to the Bruhat
ordering). Closed formulas are known but complicated
in general.

> In their 1979 paper, Kazhdan and Lusztig conjecture
that hy (1) gives a multiplicity of a simple module in a
Verma module in the principal block of category O:

[A(w - (=2p)) = L(y - (=20))] = huow,uoy (1)-
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Canonical bases

> Let G, = > -, hy,wHy. The polynomial hy ,, € Z[v]
is a Kazhdan-Lusztig polynomial.

» It is hard in general to compute hy ,,. They can be
computed inductively (with respect to the Bruhat
ordering). Closed formulas are known but complicated
in general.

> In their 1979 paper, Kazhdan and Lusztig conjecture
that hy (1) gives a multiplicity of a simple module in a
Verma module in the principal block of category O:

[A(w - (=2p)) : Ly - (=20))] = hugw,woy (1)-
Here W is the finite Weyl group of a complex
semisimplie Lie algebra g and wy is its (unique) longest
element.
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» Let C), = Zygw hy.wH,. The polynomial hy ,, € Z[v] Nlgebras
is a Kazhdan-Lusztig polynomial. L. el
» It is hard in general to compute hy . They can be R
computed inductively (with respect to the Bruhat R s
ordering). Closed formulas are known but complicated e et

in general.

> In their 1979 paper, Kazhdan and Lusztig conjecture
that hy (1) gives a multiplicity of a simple module in a Kachdan Luszig
Verma module in the principal block of category O:

[A(w - (=2p)) = L(y - (=20))] = huow,uoy (1)-

Here W is the finite Weyl group of a complex
semisimplie Lie algebra g and wy is its (unique) longest
element.

» Kazhdan and Lusztig also conjecture that hy ,, lies in
Z>o[v]. This became known as Kazhdan-Lusztig
positivity conjecture. Here there is no restriction on W.
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KL positivity and generalizations

Theorem (Elias-Williamson, 2014)

Kazhdan-Lusztig positivity holds for arbitrary Coxeter
systems.

Conjecture (Dyer, 1987)

1. Let w,y € W. We have C|,H, € 3,y Z>o[v ] Hy.

2. Let x,y € W. We have HyH 1 € 37 o\ Zo[vF]Cy.
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KL positivity and generalizations

Theorem (Elias-Williamson, 2014)

Kazhdan-Lusztig positivity holds for arbitrary Coxeter
systems.

Conjecture (Dyer, 1987)

1. Let w,y € W. We have C|,H, € 3,y Z>o[v ] Hy.

2. Let x,y € W. We have HyH 1 € 37 o\ Zo[vF]Cy.

Theorem (G., 2016)

Dyer’s conjecture holds for arbitrary Coxeter systems.
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KL positivity and generalizations Soergel bimecue,
" ek and
Temperley-Lieb

Theorem (Elias-Williamson, 2014) algebras

o cho o o Il. Generalized
Kazhdan-Lusztig positivity holds for arbitrary Coxeter Kazhdan-Lusztig
polynomials and
Systems. Dyer’s positivity

conjectures

. Thomas Gobe
Conjecture (Dyer, 1987) '

1. Let w,y € W. We have C|,H, € 3,y Z>o[v ] Hy. o L
2. Let X,y € W We haVe HXHy_l = ZWEWZZO[Vil]CW polynomials

Theorem (G., 2016)

Dyer’s conjecture holds for arbitrary Coxeter systems.

» Geometric proofs for (finite) Weyl groups were given
much before: by KL 1980 for KL positivity, by
Dyer-Lehrer 1990 for Dyer's conjecture.
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» Recall the homomorphism ¢ : B(W) — H(W)*. For
every x € W we have p(x) = Hy.
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Mikado braids and twisted standard bases

» Recall the homomorphism ¢ : B(W) — H(W)*. For
every x € W we have ¢(x) = Hy. As a consequence we
have p(xy~!) = H.H, !
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Mikado braids and twisted standard bases

» Recall the homomorphism ¢ : B(W) — H(W)*. For
every x € W we have ¢(x) = Hy. As a consequence we
have o(xy~') = H,H,!. The image of a Mikado braid !
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Mikado braids and twisted standard bases

» Recall the homomorphism ¢ : B(W) — H(W)*. For
every x € W we have ¢(x) = Hy. As a consequence we
have o(xy~') = H,H,!. The image of a Mikado braid !

» Let AC & be biclosed. Let Hy a := ¢(xa).
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» Recall the homomorphism ¢ : B(W) — H(W)*. For 1 Conoralived
every x € W we have ¢(x) = Hy. As a consequence we  Kazhdan-Lusztig
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Mikado braids and twisted standard bases

» Recall the homomorphism ¢ : B(W) — H(W)*. For
every x € W we have ¢(x) = Hy. As a consequence we
have o(xy~') = H,H,!. The image of a Mikado braid !

» Let AC &7 be biclosed. Let Hy 4 := ¢(xa). The set
{Hx A}xew is an A-basis of H(W). For A= 0 it is the
standard basis {Hy}xcw .
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Mikado braids and twisted standard bases

» Recall the homomorphism ¢ : B(W) — H(W)*. For
every x € W we have ¢(x) = Hy. As a consequence we
have p(xy 1) = HXHy_l. The image of a Mikado braid !

» Let AC &7 be biclosed. Let Hy 4 := ¢(xa). The set
{Hx A}xew is an A-basis of H(W). For A= 0 it is the
standard basis {Hy }xew. With this in mind Dyer's
conjecture can be generalized:
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» Recall the homomorphism ¢ : B(W) — H(W)*. For
every x € W we have ¢(x) = Hy. As a consequence we
have p(xy 1) = HXHy_l. The image of a Mikado braid !

» Let AC &7 be biclosed. Let Hy 4 := ¢(xa). The set
{Hx A}xew is an A-basis of H(W). For A= 0 it is the
standard basis {Hy }xew. With this in mind Dyer's
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Mikado braids and twisted standard bases

» Recall the homomorphism ¢ : B(W) — H(W)*. For
every x € W we have ¢(x) = Hy. As a consequence we
have p(xy 1) = HXHy_l. The image of a Mikado braid !

» Let AC &7 be biclosed. Let Hy 4 := ¢(xa). The set
{Hx A}xew is an A-basis of H(W). For A= 0 it is the
standard basis {Hy }xew. With this in mind Dyer's
conjecture can be generalized:

Conjecture

1. Let w e W, AC &t biclosed. We have
Cly € X xew Zzo[vFHx a-
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Mikado braids and twisted standard bases

» Recall the homomorphism ¢ : B(W) — H(W)*. For
every x € W we have ¢(x) = Hy. As a consequence we
have p(xy 1) = HXHy_l. The image of a Mikado braid !

» Let AC &7 be biclosed. Let Hy 4 := ¢(xa). The set
{Hx A}xew is an A-basis of H(W). For A= 0 it is the
standard basis {Hy }xew. With this in mind Dyer's
conjecture can be generalized:

Conjecture

1. Let w € W, AC &t biclosed. We have
Cy € erWZZO[Vil]HX,A-

2. Let x e W, AC &t biclosed. We have
HX,A € ZWEW Zzo[vil]cw.
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About the proof of KL positivity

» As suggested in the previous slide, Kazhdan-Lusztig
polynomials are related to deep questions in
representation theory.
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About the proof of KL positivity

» As suggested in the previous slide, Kazhdan-Lusztig
polynomials are related to deep questions in
representation theory. There is no known elementary
proof of Kazhdan-Lusztig positivity: while closed
formulas for KL polynomials do exist, they do not prove
that the polynomials have actually nonnegative
coefficients (except if W is a dihedral group).
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About the proof of KL positivity

» As suggested in the previous slide, Kazhdan-Lusztig
polynomials are related to deep questions in
representation theory. There is no known elementary
proof of Kazhdan-Lusztig positivity: while closed
formulas for KL polynomials do exist, they do not prove
that the polynomials have actually nonnegative
coefficients (except if W is a dihedral group).

» Proof of KL positivity for Weyl groups (KL 1980):
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About the proof of KL positivity

» As suggested in the previous slide, Kazhdan-Lusztig
polynomials are related to deep questions in
representation theory. There is no known elementary
proof of Kazhdan-Lusztig positivity: while closed
formulas for KL polynomials do exist, they do not prove
that the polynomials have actually nonnegative
coefficients (except if W is a dihedral group).

» Proof of KL positivity for Weyl groups (KL 1980):
Kazhdan and Lusztig related the hy ,, to intersection
cohomology of Schubert varieties:
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About the proof of KL positivity

» As suggested in the previous slide, Kazhdan-Lusztig
polynomials are related to deep questions in
representation theory. There is no known elementary
proof of Kazhdan-Lusztig positivity: while closed
formulas for KL polynomials do exist, they do not prove
that the polynomials have actually nonnegative
coefficients (except if W is a dihedral group).

» Proof of KL positivity for Weyl groups (KL 1980):
Kazhdan and Lusztig related the hy ,, to intersection
cohomology of Schubert varieties:

hyw = Y V72 AmHICE (Xu).
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» As suggested in the previous slide, Kazhdan-Lusztig [

algebras
polynomials are related to deep questions in I1. Generalized
. . Kazhdan-Lusztig
representation theory. There is no known elementary et et
proof of Kazhdan-Lusztig positivity: while closed R s

formulas for KL polynomials do exist, they do not prove
that the polynomials have actually nonnegative
coefficients (except if W is a dihedral group).

» Proof of KL positivity for Weyl groups (KL 1980): A
Kazhdan and Lusztig related the hy ,, to intersection
cohomology of Schubert varieties:

Thomas Gobet

hyw = Y V72 AmHICE (Xu).
i
Here C, = ByB/B isa_Schubert cell in the flag variety
X =G/B and X,, = C,.



About the proof of KL positivity Soergel bimadues,
e
Temperley-Lieb

» As suggested in the previous slide, Kazhdan-Lusztig -
polynomials are related to deep questions in I1. Generalized
. . Kazhdan-Lusztig
representation theory. There is no known elementary et et
proof of Kazhdan-Lusztig positivity: while closed R s
formulas for KL polynomials do exist, they do not prove Thomas Gobet

that the polynomials have actually nonnegative
coefficients (except if W is a dihedral group).
» Proof of KL positivity for Weyl groups (KL 1980): A
Kazhdan and Lusztig related the hy ,, to intersection
cohomology of Schubert varieties:

hyw = Y V72 AmHICE (Xu).
i
Here C, = ByB/B isa_Schubert cell in the flag variety
X = G/B and X,, = C,. Hidden behind this formula is

a categorification of the Hecke algebra by perverse
sheaves on X.
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About Kazhdan-Lusztig positivity

» Intersection cohomology of Schubert varieties gives a
framework in which to interpret the hy , (not only

hy,w(1)).
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About Kazhdan-Lusztig positivity

» Intersection cohomology of Schubert varieties gives a
framework in which to interpret the hy , (not only
hy.w(1)). But Kazhdan-Lusztig positivity is conjectured
without restriction on W, while Schubert varieties only
exist if W is a (finite or affine) Weyl group.
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About Kazhdan-Lusztig positivity

» Intersection cohomology of Schubert varieties gives a
framework in which to interpret the hy , (not only
hy.w(1)). But Kazhdan-Lusztig positivity is conjectured
without restriction on W, while Schubert varieties only
exist if W is a (finite or affine) Weyl group.

» There is (a priori) no recourse to geometry of Schubert
varieties or category O for general Coxeter groups W.
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About Kazhdan-Lusztig positivity

» Intersection cohomology of Schubert varieties gives a
framework in which to interpret the hy , (not only
hy.w(1)). But Kazhdan-Lusztig positivity is conjectured
without restriction on W, while Schubert varieties only
exist if W is a (finite or affine) Weyl group.

» There is (a priori) no recourse to geometry of Schubert
varieties or category O for general Coxeter groups W.
This raises a natural question: Is there a framework in
which to prove KL positivity in general 7 Is there some
“representation theory” in which KL polynomials can be
interpreted as (graded) multiplicities ?
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Soergel bimodules

» Let V be a real reflection faithful representation of
(W,S) (a f.d. representation in which elements of T
act by geometric reflections and reflection hyperplanes
distinguish reflections - for finite W one can take the
Tits representation).
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Soergel bimodules

» Let V be a real reflection faithful representation of
(W,S) (a f.d. representation in which elements of T
act by geometric reflections and reflection hyperplanes
distinguish reflections - for finite W one can take the
Tits representation). Let R = S(V*).
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» Let V be a real reflection faithful representation of Te"’aﬁ’gee";ya':'eb
(W,S) (a f.d. representation in which elements of T 1. Generalized
act by geometric reflections and reflection hyperplanes R
distinguish reflections - for finite W one can take the R s
Tits representation). Let R = S(V*). It is a graded Thomas Gobet
algebra (we set deg(V*) = 2) and W acts degreewise
on R.

Soergel bimodules



Mikado braids,

Soergel bl m Od u | €s Soergel bimodules,
and positivity in
Hecke and

» Let V be a real reflection faithful representation of e
(W,S) (a f.d. representation in which elements of T 1. Generalised
act by geometric reflections and reflection hyperplanes R
distinguish reflections - for finite W one can take the DV:;;]SJ.E"C‘;Z‘:;‘S"‘Y
Tits representation). Let R = S(V*). It is a graded e Cobet
algebra (we set deg(V*) = 2) and W acts degreewise
on R.

» Given a graded R-bimodule M, we denote by M its
k-th graded component.
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Soergel bimodules Soargel imedules
and positivity in
Hecke and'
» Let V be a real reflection faithful representation of Te"’aﬁ’geer';ya’s“eb
(W,S) (a f.d. representation in which elements of T 1. Generalized
act by geometric reflections and reflection hyperplanes R
distinguish reflections - for finite W one can take the R s
Tits representation). Let R = S(V*). It is a graded Thomas Gobet
algebra (we set deg(V*) = 2) and W acts degreewise
on R.

» Given a graded R-bimodule M, we denote by M its
k-th graded component. We define M(/i) as the
bimodule M with graduation shifted by i:

M(i)k = M;+k.
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» Let V be a real reflection faithful representation of e
(W,S) (a f.d. representation in which elements of T 1. Generalised
act by geometric reflections and reflection hyperplanes R
distinguish reflections - for finite W one can take the DV:;;]SJ.E"C‘;Z"‘;‘S"‘Y
Tits representation). Let R = S(V*). It is a graded e Cobet
algebra (we set deg(V*) = 2) and W acts degreewise
on R.

» Given a graded R-bimodule M, we denote by M its
k-th graded component. We define M(/i) as the
bimodule M with graduation shifted by i:

M(i)k = M;+k.

» Fors €S, set Bs := R®gs R(1), where
R*={f € R|s(f)=f}. Itis an (indecomposable)
graded R-bimodule.
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» Let V be a real reflection faithful representation of e
(W,S) (a f.d. representation in which elements of T 1. Generalised
act by geometric reflections and reflection hyperplanes R
distinguish reflections - for finite W one can take the Dyfg;jeiij‘f;‘s’“y
Tits representation). Let R = S(V*). It is a graded e Cobet
algebra (we set deg(V*) = 2) and W acts degreewise
on R.

» Given a graded R-bimodule M, we denote by M its
k-th graded component. We define M(/i) as the
bimodule M with graduation shifted by i:

M(i)k = M;+k.

» Fors €S, set Bs := R®gs R(1), where
R*={f € R|s(f)=f}. Itis an (indecomposable)
graded R-bimodule. The category of graded
R-bimodules is Krull-Schmidt, that is, every graded
R-bimodule decomposes in an essentially unique way in
a direct sum of indecomposables.

Soergel bimodules
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Grothendieck rings

» Given an additive category C, we define its split
Grothendieck group (C) as the abelian group generated
by symbols (M) for every object M € C (modulo
isomorphisms) with relations (M) = (M’) + (M")
whenever M = M' ¢ M".
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» Given an additive category C, we define its split II. Generalized
. . Kazhdan-Lusztig
Grothendieck group (C) as the abelian group generated polynomials and

. Dyer’s positivi
by symbols (M) for every object M € C (modulo e
isomorphisms) with relations (M) = (M') + (M") Thomas Gobet

whenever M = M' & M".

» In case C is a category of R-bimodules which is stable by
®R, then (C) is equipped with a natural ring structure
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(M) - (M) := (M @ M').
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. . Kazhdan-Lusztig
Grothendieck group (C) as the abelian group generated polynomials and
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by symbols (M) for every object M € C (modulo e
isomorphisms) with relations (M) = (M') + (M") Thomas Gobet

whenever M = M' & M".

» In case C is a category of R-bimodules which is stable by
®R, then (C) is equipped with a natural ring structure

Soergel bimodules

(M) - (M) := (M @ M').

If moreover the bimodules are graded, then (C) is even
an A-algebra, where the operation of v is defined by
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1. Let w=s15---5k € W, k ={(w). There is a unique szl
indecomposable summand B,, of Bs; ®r Bs, ®r - - - Qr Bs,

which does not occur as a summand of a smaller product.
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2. Let B be the Karoubian envelope of the category generated
by (shifts of) products of the Bs. The indecomposables in B
are (Up to iSO) given by the BW(I), w € W, i € 7. Soergel bimodules



Soergel bimodules and categorification of the
Hecke algebra

Theorem (Soergel, 2007)

1. Letw=gs15---s € W, k =4£(w). There is a unique
indecomposable summand B,, of Bs, ®gr Bs, ®r - - - Qr Bs,
which does not occur as a summand of a smaller product.

2. Let B be the Karoubian envelope of the category generated
by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the B, (i), w € W, i € Z.

3. There is an isomorphism of A-algebras € : H — (B),
E(C) = (Bs), £(v) = (R(1)).
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Soergel bimodules and categorification of the
Hecke algebra

Theorem (Soergel, 2007)

1. Letw=gs15---s € W, k =4£(w). There is a unique
indecomposable summand B,, of Bs, ®gr Bs, ®r - - - Qr Bs,
which does not occur as a summand of a smaller product.

2. Let B be the Karoubian envelope of the category generated
by (shifts of) products of the Bs. The indecomposables in B
are (up to iso) given by the B, (i), w € W, i € Z.

3. There is an isomorphism of A-algebras € : H — (B),
E(C) = (Bs), £(v) = (R(1)).

Conjecture (Soergel 2007; proven by Elias and
Williamson 2014)

E(Cl) = (By) forallwe W.

Mikado braids,
Soergel bimodules,
and positivity in
Hecke and
Temperley-Lieb
algebras

Il. Generalized
Kazhdan-Lusztig
polynomials and
Dyer’s positivity

conjectures

Thomas Gobet

Soergel bimodules



Coxeter system

Kazhdan-Lusztig
polynomials

Soergel bimodules

Proof of Dyer’s
conjecture



» Let W be of type Ay, thatis, S = {s}, W = {e,s}.

conjectures

Thomas Gobet
Hecke algebra of a
Coxeter system

Kazhdan-Lusztig
polynomials

Soergel bimodules

Proof of Dyer’s
conjecture

DA



» Let W be of type Ay, thatis, S = {s}, W = {e,s}.
The Tits representation of W is R where s acts by
v — —v. We have R = R[X] where s(X) = —X.
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» Let W be of type Ay, thatis, S = {s}, W = {e,s}.
The Tits representation of W is R where s acts by R
v i— —v. We have R = R[X] where s(X) = —X. g‘;‘g,".;j";i;‘;;;i";;
» It follows that R® = R[X?]. Hence as an RS-module, we coneeres
have R = RS & XR® 2 RS & R%(~2).
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» Let W be of type Aj, thatis, S = {s}, W = {e,s}. algebras

Il. Generalized

The Tits representation of W is R where s acts by Kazhdan Lusstig
v i— —v. We have R = R[X] where s(X) = —X. LR

» It follows that R® = R[X?]. Hence as an RS-module, we

Dyer’s positivity
conjectures

Thomas Gobet

have R = RS @ XR® = RS @ RS(—2).

» We have

Bs ®R Bs

1 1 1|

1

(R®gs R(1)) ®@g (R ®gs R(1)) Soergel bimodules
R ®rs R @ps R(2)

R ®ps (R° @ R*(—2)) ®rs R(2)

(R ®rs R @r: R) @ (R ®rs R® @rs R(2))

(R®gs R) @ (R ®ps R)(2)

Bs(1) ® Bs(-1).
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» We just showed that Bs ®g Bs = Bs(1) @ Bs(—1).
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Example: type A;

» We just showed that Bs ®g Bs = Bs(1) @ Bs(—1).

» Recall that C, = H; + v. A quick computation shows
that C2 = (v + v~1)C.. This relation is categorified by
the above tensor product.

Mikado braids,
Soergel bimodules,
and positivity in
Hecke and
Temperley-Lieb
algebras

Il. Generalized
Kazhdan-Lusztig
polynomials and
Dyer’s positivity

conjectures

Thomas Gobet

Soergel bimodules



Mikado braids,

EXa m ple. type A]_ Soergel bimodules,
and positivity in
Hecke and
Temperley-Lieb
algebras

Il. Generalized

Kazhdan-Lusztig
polynomials and

» We jUSt showed that Bs ®R Bs = Bs(]-) D Bs(_]-) Dyer's. positivity
» Recall that C, = H; + v. A quick computation shows e
that C2 = (v + v~1)C.. This relation is categorified by
the above tensor product.

» We have R®gr Bs = Bs = Bs ®g R.

Thomas Gobet
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» We jUSt showed that Bs ®R Bs = Bs(]-) D Bs(_]-) Dyer’s positivity

> Recall that C; = Hs + v. A quick computation shows conesres
that C2 = (v + v~1)C.. This relation is categorified by

the above tensor product.

» We have R®r Bs = B; =2 Bs ®g R. Hence the
indecomposable bimodules in the graded monoidal
category generated by Bs are (up to shifts) Bs and R.

Thomas Gobet
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» We jUSt showed that Bs ®R Bs = Bs(]-) D Bs(_]-) Dyer’s positivity
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» Recall that C, = H; + v. A quick computation shows
that C2 = (v + v~1)C.. This relation is categorified by
the above tensor product.

» We have R®r Bs = B; =2 Bs ®g R. Hence the
indecomposable bimodules in the graded monoidal
category generated by Bs are (up to shifts) Bs and R.
They categorify the canonical basis of H(W).
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» We just showed that Bs ®g Bs = Bs(1) @ Bs(—1). E‘;‘gggn;g;iiﬂ‘;

» Recall that C, = H; + v. A quick computation shows e
that C2 = (v + v~1)C.. This relation is categorified by
the above tensor product.

» We have R®r Bs = B; =2 Bs ®g R. Hence the
indecomposable bimodules in the graded monoidal
category generated by Bs are (up to shifts) Bs and R.
They categorify the canonical basis of H(W).

» We have checked the isomorphism H(W) = (B) in that
case.

Thomas Gobet
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polynomials and

For x € W, let R, be the graded bimodule R with right Dyer's positivity

operation twisted by x. Each B € B has a unique filtration conjectures
Thomas Gobet
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multiplicities are independent of the enumeration of W we Soergel bimodules
chose. We write them [B : Ry(i)].
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Let wog = e, wy, wa, ... be an enumeration of W refining <. J;;Eja",i'ffffﬁg
For x € W, let R, be the graded bimodule R with right P e

operation twisted by x. Each B € B has a unique filtration conjectures

Thomas Gobet
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multiplicities are independent of the enumeration of W we Soergel bimodules
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» To prove the categorification theorem, Soergel explicitly
describes the inverse of the map £ : H(W) — (B).



Soergel bimodules and KL positivity

Proposition (“Standard filtrations”, Soergel, 2007)

Let wog = e, wy, wa, ... be an enumeration of W refining <.

For x € W, let R, be the graded bimodule R with right
operation twisted by x. Each B € B has a unique filtration

OZBkgBk_lgBk_2"'gBlgBOZB

with B'/B™ = @ R,,(n,). Moreover, the graded
multiplicities are independent of the enumeration of W we
chose. We write them [B : Ry(i)].

» To prove the categorification theorem, Soergel explicitly
describes the inverse of the map £ : H(W) — (B). It is

given by

(BeB)— > Y [B:Ri — Ux))]v'Hy.
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» In particular, the classes of bimodules in B are positive
in the basis {Hy}.
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Soergel bimodules and KL positivity

» In particular, the classes of bimodules in B are positive
in the basis { Hy}. Hence Soergel’s conjecture, which
precisely says that C], corresponds to (B,,) via the
isomorphism, implies KL positivity conjecture.
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» In particular, the classes of bimodules in B are positive algebras
in the basis {Hx}. Hence Soergel’'s conjecture, which RGeS e
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precisely says that C], corresponds to (B,,) via the polynomials and
. . . . e . . Dyer’s positivity
isomorphism, implies KL positivity conjecture. More conjectures
preCIse|y, we haVe Thomas Gobet

hyw = Z[BW SRy (i — £(y)v'.
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in the basis {Hx}. Hence Soergel’'s conjecture, which RGeS e
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. . . . e . . Dyer’s positivity
isomorphism, implies KL positivity conjecture. More conjectures
precisely, we have Thomas Gobet

hyw = [Bw: Ry(i — £(y)]V'.
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Graded multiplicites in standard filtrations of Soergel Soergel bimodules
bimodules are Kazhdan-Lusztig polynomials !



Soergel bimodules and KL positivity Soergel bimadues,
and positivity in
Hecke and

. . . .. Temperley-Lieb
» In particular, the classes of bimodules in B are positive algebras
in the basis {Hy}. Hence Soergel's conjecture, which I1. Generalized
. / . Kazhdan-Lusztig
precisely says that C], corresponds to (B,,) via the polynomials and
. . . . e . . Dyer’s positivity
isomorphism, implies KL positivity conjecture. More conjectures
preCise|y, we haVe Thomas Gobet
. ; i
hyw = E [Bw : Ry(i — £(y)]v'.
i
Graded multiplicites in standard filtrations of Soergel Soergel bimodules

bimodules are Kazhdan-Lusztig polynomials !

(in particular, they have nonnegative coefficients)
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» Recall that R = R®* @ R*X as left R*-module (we have
R =2 R[X]). Hence as a (left) R°-module, Bs has a basis
giVen by {1 [ ]., 1 X X, X () ]., X & X} Soergel bimodules



Example

» Let W be of type A;. Let s € S. The aim is to
compute the standard filtration of B = R ®gs R(1).
There is a surjective multiplication map

Bs - R(1),a® b+ ab.

» Recall that R = R®* @ R*X as left R*-module (we have
R =2 R[X]). Hence as a (left) R°-module, Bs has a basis
given by {1®1,1® X,X ®1,X ® X}. Using this basis
one checks (little easy exercise for tonight) that the map

Rs(=1) = Bs,r—=r@X —rX®1

is an injective homomorphism of bimodules,
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» Let W be of type A;. Let s € S. The aim is to . Coneratined
compute the standard filtration of B = R ®gs R(1). iy
. . . P . polynomials an
There is a surjective multiplication map Dyer's positivity

conjectures

BS s R(].), 3 ® b — ab Thomas Gobet

» Recall that R = R®* @ R*X as left R*-module (we have
R =2 R[X]). Hence as a (left) R°-module, Bs has a basis
giVen by {1 [ ]., 1 X X, X () ]., X () X} USing thls baSiS Soergel bimodules
one checks (little easy exercise for tonight) that the map

Rs(=1) = Bs,r—=r@X —rX®1

is an injective homomorphism of bimodules, and that
Rs(—1) is precisely the kernel of the surjective map
above.
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Example

» Hence there is a short exact sequence
0 — Rs(—1) — Bs — R(1) — 0.
» This s.e.s. provides a filtration of B by the Ry, x € W,

which respects the (reverse) Bruhat order. Hence by
unicity it is the standard filtration of Bs.
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Example

» Hence there is a short exact sequence
0 — Rs(—1) — Bs — R(1) — 0.

» This s.e.s. provides a filtration of B by the Ry, x € W,
which respects the (reverse) Bruhat order. Hence by
unicity it is the standard filtration of Bs.

» We have >_;[Bs : R(i)]v/ = v. This should be equal to
he.s.
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Example

» Hence there is a short exact sequence
0 — Rs(—1) — Bs — R(1) — 0.

» This s.e.s. provides a filtration of B by the Ry, x € W,
which respects the (reverse) Bruhat order. Hence by
unicity it is the standard filtration of Bs.

» We have >_;[Bs : R(i)]v/ = v. This should be equal to
hes. We have Y ";[Bs : Rs(i — 1)]v' = 1, which should
be hs s.
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Example

» Hence there is a short exact sequence
0 — Rs(—1) — Bs — R(1) — 0.

» This s.e.s. provides a filtration of B by the Ry, x € W,
which respects the (reverse) Bruhat order. Hence by
unicity it is the standard filtration of Bs.

» We have >_;[Bs : R(i)]v/ = v. This should be equal to
hes. We have Y ";[Bs : Rs(i — 1)]v' = 1, which should
be hs s.

» We already computed C, = H; + v, so we know that
hes = v and hs s = 1.
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Example

» Hence there is a short exact sequence
0 — Rs(—1) — Bs — R(1) — 0.

» This s.e.s. provides a filtration of B by the Ry, x € W,
which respects the (reverse) Bruhat order. Hence by
unicity it is the standard filtration of Bs.

» We have >_;[Bs : R(i)]v/ = v. This should be equal to
hes. We have Y ";[Bs : Rs(i — 1)]v' = 1, which should
be hs s.

» We already computed C, = H; + v, so we know that
hes = v and hs s = 1.

Everything works !
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Example

» Hence there is a short exact sequence

» This s.e.s. provides a filtration of B by the Ry, x € W,
which respects the (reverse) Bruhat order. Hence by

0 — Rs(—1) — Bs — R(1) — 0.

unicity it is the standard filtration of Bs.

» We have >_;[Bs : R(i)]v/ = v. This should be equal to
hes. We have Y ";[Bs : Rs(i — 1)]v' = 1, which should
be hs s.

» We already computed C, = H; + v, so we know that

hes = v and hs s = 1.

Everything works ! (at least in type A1)
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» Write C), = > cw hf’WHX,A.
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Back to Dyer's conjecture

» We want to generalize KL positivity to

G, €Y Zxo[vF ' Hea, Yw,A
xeWw

» Write C, = >,y ho , Hxa. It is natural to look for
an interpretation of hf,w in the framework of Soergel

bimodules.
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Back to Dyer's conjecture

» We want to generalize KL positivity to

G, €Y Zxo[vF ' Hea, Yw,A
xeWw

» Write C, = >,y ho , Hxa. It is natural to look for

an interpretation of hf,w in the framework of Soergel
bimodules.

» ldea: “twist” the standard filtration by A.
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Back to Dyer's conjecture

» We want to generalize KL positivity to

G, €Y Zxo[vF ' Hea, Yw,A
xeWw

» Write C, = >,y ho , Hxa. It is natural to look for

an interpretation of h)f‘,w in the framework of Soergel

bimodules.
» ldea: “twist” the standard filtration by A.

Definition (Twisted Bruhat preorder)

Let AC T. Define a preorder <4 on W as the transitive
closure of x <4 xt whenever x € W, t € T, t ¢ N(x" 1)+ A
(where + means symmetric difference).
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Back to Dyer's conjecture

» We want to generalize KL positivity to

G, €Y Zxo[vF ' Hea, Yw,A
xeWw

» Write C, = > cw he wHx a. It is natural to look for

x,w' X,

A in the framework of Soergel

an interpretation of hl’,

bimodules.
» ldea: “twist” the standard filtration by A.

Definition (Twisted Bruhat preorder)

Let AC T. Define a preorder <4 on W as the transitive
closure of x <4 xt whenever x € W, t € T, t ¢ N(x" 1)+ A
(where 4+ means symmetric difference). If A =0 it is just
the Bruhat order.
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The preorder <, is an order if and only if A is biclosed.
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Back to Dyer's conjecture Soergel bimecue,
and positivity in
Hecke and
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Theorem (Edgar, 2007)
Il. Generalized

Kazhdan-Lusztig

The preorder <, is an order if and only if A is biclosed. polynomials and
Dyer’s positivity

conjectures

» If W is finite, every biclosed set is an inversion set. We Tiees G
have x <p(u) y if and only if xw < yw.
» Example: W =63, <p(g;s,)-
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Twisted standard filtrations of Soergel bimodules

Proposition (Twisted standard filtrations)

Let AC & biclosed. Let W = {w;};cz be an enumeration
of W refining <.
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Proposition (Twisted standard filtrations)

Il. Generalized

Let AC & biclosed. Let W = {w;};cz be an enumeration Kazhdan-Lusztig

polynomials and
of W refining <a. Each B € B has a unique filtration Izt sz
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Thomas Gobet

OZBkgBk—lgBk—2“'gBm+2gBm+lgBm:B’

m < k with B'/B'*! =~ @®, Rw,(np). Moreover, the graded
multiplicities are independent of the enumeration of W we
chose. We write them [B : Ry(i)]a-
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Twisted standard filtrations of Soergel bimodules

Proposition (Twisted standard filtrations)
Let AC & biclosed. Let W = {w;};cz be an enumeration
of W refining <a. Each B € B has a unique filtration

0= B C Bk-1 - Bk—2... C B2 C gm+1 C B™ = B,

m < k with B'/B'*! =~ @®, Rw,(np). Moreover, the graded
multiplicities are independent of the enumeration of W we
chose. We write them [B : Ry(i)]a-

» Define a length function {4 : W — Z by
la(w) = f(w) —2IN(w= )N Al
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Twisted standard filtrations of Soergel bimodules

Proposition (Twisted standard filtrations)

Let AC & biclosed. Let W = {w;};cz be an enumeration
of W refining <. Each B € B has a unique filtration

OZBkgBk—lgBk—2“'gBm+2gBm+lgBm:B’

m < k with B'/B'*! =~ @D, Rw(np). Moreover, the graded
multiplicities are independent of the enumeration of W we
chose. We write them [B : Ry(i)]a-

» Define a length function {4 : W — Z by
la(w) = f(w) —2IN(w= )N Al

Theorem (G., 2016)
We have by, = > i[Bw : Re(i — £a(x))]av".
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_ I I. Ge"eraliled

Kazhdan-Lusztig
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The first part of Dyer’s conjecture holds for arbitary Coxeter Dyer's positivity
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Back to Dyer's conjecture

Corollary

The first part of Dyer’s conjecture holds for arbitary Coxeter
systems.

» To prove this generalized version of KL positivity, we do
not require to mimick Elias and Williamson's proof of
Soergel's conjecture.
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Back to Dyer's conjecture

Corollary

The first part of Dyer’s conjecture holds for arbitary Coxeter
systems.

» To prove this generalized version of KL positivity, we do
not require to mimick Elias and Williamson's proof of
Soergel's conjecture. One needs to find a replacement
for Dyer and Lehrer's geometric argument, and apply
Soergel's conjecture at some point.
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Back to Dyer's conjecture

Corollary

The first part of Dyer’s conjecture holds for arbitary Coxeter
systems.

» To prove this generalized version of KL positivity, we do
not require to mimick Elias and Williamson's proof of
Soergel's conjecture. One needs to find a replacement
for Dyer and Lehrer's geometric argument, and apply
Soergel's conjecture at some point.

» Open question: is there an interpretation of hf’W in
the framework of (graded versions of the principal block
of) category O, in case W is a finite Weyl group ?
(multiplicities of twisted Verma modules ?).
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» What about the second part of the conjecture ?
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Back to Dyer's conjectures

» What about the second part of the conjecture ?
Hea € Y Zso[vF ] Cy.
wew

» This conjecture precisely says that images of Mikado
braids in H(W) are positive in the basis {Cy }wew.
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Back to Dyer's conjectures Mikado braids,
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» What about the second part of the conjecture ? Rl
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» This conjecture precisely says that images of Mikado comectures
braids in (W) are positive in the basis {Cy, }wew-
Problem: There is no object in B categorifying H, 4 in

general!

Thomas Gobet

Proof of Dyer's
conjecture



Back to Dyer's conjectures Mikado braids,

Soergel bimodules,
and positivity in
Hecke and

» What about the second part of the conjecture ? Temperisy Heb
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polynomials and
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) . . . . conjectures
» This conjecture precisely says that images of Mikado '
braids in H(W) are positive in the basis {Cy }wew.
Problem: There is no object in B categorifying H, 4 in
general!

» Example: Bs categorifies C, = v + H.
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» This conjecture precisely says that images of Mikado
braids in H(W) are positive in the basis {Cy }wew.
Problem: There is no object in B categorifying H, 4 in
general!

» Example: Bs categorifies C, = v + Hs. But Bs is
indecomposable.
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» This conjecture precisely says that images of Mikado e
braids in H(W) are positive in the basis {Cy }wew.
Problem: There is no object in B categorifying H, 4 in

general!

» Example: Bs categorifies C, = v + Hs. But Bs is
indecomposable. Hence Hs should correspond to a ,
(strict) direct summand of an indecomposable conpecture
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Back to Dyer's conjectures

» What about the second part of the conjecture ?

Hea € Y Zso[vF ] Cy.
weW

» This conjecture precisely says that images of Mikado
braids in H(W) are positive in the basis {Cy }wew.
Problem: There is no object in B categorifying H, 4 in
general!

» Example: Bs categorifies C, = v + Hs. But Bs is
indecomposable. Hence Hs should correspond to a
(strict) direct summand of an indecomposable
bimodule! Solution: replace Soergel bimodules by
complexes of Soergel bimodules!

Mikado braids,
Soergel bimodules,
and positivity in
Hecke and
Temperley-Lieb
algebras

Il. Generalized
Kazhdan-Lusztig
polynomials and
Dyer’s positivity

conjectures

Thomas Gobet

Proof of Dyer's
conjecture



Back to Dyer's conjectures

» What about the second part of the conjecture ?

Hea € Y Zso[vF ] Cy.
weW

» This conjecture precisely says that images of Mikado
braids in H(W) are positive in the basis {Cy }wew.
Problem: There is no object in B categorifying H, 4 in
general!

» Example: Bs categorifies C, = v + Hs. But Bs is
indecomposable. Hence Hs should correspond to a
(strict) direct summand of an indecomposable
bimodule! Solution: replace Soergel bimodules by
complexes of Soergel bimodules!

» The H “should” be categorified by the complex

0—Bs % R(1)—0

in a suitable category (u is the multiplication).
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Mikado braids,

Categorification of Artin groups Soergal Bimodules
e
Temperley-Lieb

» Let K®(B) be the bounded homotopy category of B. Its algebras
objects are bounded complexes of Soergel bimodules, o Generalized.
and the morphisms between them are morphisms of L
. yer's positivity

complexes of graded bimodules up to homotopy. conjectures
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Mikado braids,

Categorification of Artin groups Soergal Bimodules
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» Let K®(B) be the bounded homotopy category of B. Its algebras
objects are bounded complexes of Soergel bimodules, K';-zfdean:_rftl.isz:gg
and the morphisms between them are morphisms of polynomial and
complexes of graded bimodules up to homotopy. It is a conjectures
triangulated category and as such, it has a Thomas Gobet

Grothendieck group (K?(B))a. It is a general fact for
an additive category C that (C) = (K?(C))a (as abelian
groups). Here ®g induces a total tensor product of
complexes @' compatible with this isomorphism.

Hence (K2(B))a = (B) (as A-algebras). Proof of Dyer's

conjecture

» Rouquier showed that the complexes
Fs:=0— Bs — R(1) » 0, s € S (with Bs in cohom.
degree zero) admit an inverse E; for @' in K°(B) and
that they satisfy the braid relations of W. In fact,
viewed as functors on K?(B) via Fs @' —, they provide
a categorification of (a quotient of) B(W).
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» In particular, we get complexes of Soergel bimodules
categorifying every element § € B(W). We denote this
complex by Cs € K2(B).
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» In particular, we get complexes of Soergel bimodules
categorifying every element 5 € B(W). We denote this
complex by Cs € K®(B). Note that it is defined only up to
homotopy.

» Every complex C in K?(13) admits a minimal complex C™i®,
that is, with no contractible summand of the form
isom.

0 —- M —> M’ — 0. This complex is unique up to
isomorphism of complexes.

Theorem (G., 2016)

Letx,yE W, 7 HX,A:ZWGquWC

1. Let w € W. The bimodule B,, appears as a direct summand
in C;IA““ either only in odd cohomological degrees or only in
even degrees.

2. The coefficient qiw gives the multiplicity of B,, in all cohom.

degrees of 2™ together. = q',, € Z[v*].
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Conclusion and questions

» Hence the second part of Dyer's conjecture holds for
arbitrary Coxeter systems. The generalization to all
Mikado braids remains open (in the Theorem above we
have A = N(y); this case precisely corresponds to
Dyer’s conjecture).
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» Hence the second part of Dyer's conjecture holds for
arbitrary Coxeter systems. The generalization to all
Mikado braids remains open (in the Theorem above we
have A = N(y); this case precisely corresponds to
Dyer’s conjecture).

» This raises the following question: can we characterize
those braids which have a positive KL expansion ?

» A key point in the proof of the theorem above is to
show that Cff;m is linear, that is, that the shifts of an
indecomposable summand coincides with the
homological degree in which the summand sits. Can we
describe those C};““ which are linear ?
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