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Wolfgang (Vincent) Doeblin (1915-1940)

P.G. Bergman, J.L. Lebowitz 1955: Convergence to
equilibrium for scattering equations with non-equilibrium
steady states by using Doeblin’s Theorem (non-quantitative)

T. E. Harris 1956: Conditions for existence and uniqueness of
a steady state for a Markov process

S. P. Meyn, R. L. Tweedie 1993: Exponential convergence to
equilibrium

J.C. Mattingly, A. M. Stuart, D.J. Higham 2001: Convergence
to equilibrium for the kinetic Fokker-Planck equation
(non-quantitative)
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M. Hairer, J. Mattingly 2011: Simplified proof using mass
transport distances,
Quantitative rates for convergence to equilibrium once
assumptions verified quantitatively

E.A. Carlen, R. Esposito, J.L. Lebowitz, R. Marra, C. Mouhot
2016: Exponential convergence to a non-equilibrium steady
state for some non-linear kinetic equations on the torus by
using Doeblin’s Theorem (quantitative)
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(Ω,F) : measurable space with Borel σ−algrebra,

M(Ω) : space of finite measures on (Ω,F),

P(Ω) : space of probability measures on (Ω,F).

Markov process x on a state space Ω ≈ transition probability
functions

S : Ω× S 7→ R is a transition probability function on a finite
measure space if

1 S(x , ·) is a probability measure for every x ∈ Ω,
2 x 7→ S(x ,A) is a measurable function for every A ∈ S.
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Stochastic/ Markov operator on probability measures
P : Ω→ P(Ω) acting on

1 the space of finite measures on Ω:

(Pµ)(A) =

∫
Ω

S(x ,A)µ(dx),

2 the space of bounded measurable functions ϕ : Ω→ [0,∞):

(Pϕ)(x) =

∫
Ω

ϕ(y)S(x ,dy).

continuous time Markov processes ≈ a family of Markov
transition kernels / semigroup

Pt :M(Ω)→M(Ω), linear, mass and positivity preserving,
satisfying

1 the semigroup property: Ps+t = PsPt , for all t, s ≥ 0.
2 P0 is the identity.

Ptµ is the weak solution to the PDE with initial data µ.
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Hypothesis 1: Doeblin’s condition

We assume that (Pt)t≥0 is a stochastic semigroup, defined
through a Markov transition probability function, and that there
exists t0 > 0, a probability distribution ν and α ∈ (0, 1) such that
for any x in the state space Ω we have

Pt0δx ≥ αν. (1)
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Doeblin’s Theorem

If we have a stochastic semigroup (Pt)t≥0 satisfying Doeblin’s
condition then for any two measures µ1 and µ2 and any integer
n ≥ 0 we have that

‖Pn
t0
µ1 − Pn

t0
µ2‖TV ≤ (1− α)n‖µ1 − µ2‖TV. (2)

As a consequence, the semigroup has a unique equilibrium
probability measure µ∗, and for all µ

‖Pt(µ− µ∗)‖TV ≤
1

1− α
e−λt‖µ− µ∗‖TV, t ≥ 0, (3)

where

λ :=
log(1− α)

t0
> 0.
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Hypothesis 2: Lyapunov condition

There exists some function V : Ω→ [0,∞) and constants
D ≥ 0, γ ∈ (0, 1) such that

Pt0(V )(x) ≤ γV (x) + D. (4)

This is equivalent to the statement with γ = e−λt0 and
D = K

λ (1− e−λt0) ≤ Kt0:∫
Ω
f (t0, x)V (x)dx ≤ γ

∫
Ω
f (0, x)V (x)dx + D. (5)

d
dt

∫
Ω f (t, x)V (x)dx ≤ −λ

∫
Ω f (t, x)V (x)dx + K .
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Hypothesis : ’local’ Doeblin-like condition

There exists a probability measure ν and a constant α ∈ (0, 1)
such that

inf
x∈C

Pt0δx ≥ αν, (6)

where
C = {x : V (x) ≤ R}

for some R > 2D
1−γ .
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Distance on probability measures for every β > 0 defined as

ρβ(µ1, µ2) =

∫
(1 + βV (x))|µ1 − µ2|(dx).

A weighted supremum norm for every measurable function ϕ
for every β > 0 as in

‖ϕ(x)‖ = sup
x

|ϕ(x)|
1 + βV (x)

.
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Harris’s Theorem

If Hypotheses 4 and 6 hold then there exist ᾱ ∈ (0, 1) and β > 0
such that

ρβ(Pt0µ1,Pt0µ2) ≤ ᾱρβ(µ1, µ2). (7)

Explicitly if we choose ε ∈ (0, α) and δ ∈
(
γ +

2D

R
, 1

)
,

then we can set

β =
ε

D
and ᾱ = max

{
1− α + ε,

2 + Rβδ

2 + Rβ

}
.
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Subgeometric Harris’s Theorem [Hairer ’16]

Given the forwards operator, L of the stochastic semigroup Pt s.t.
Lφ := d

dtStφ
∣∣
t=0

,
suppose that there exists a continuous function V valued in [1,∞)
with pre compact level sets such that

LV ≤ K − φ(V ),

for some constant K and some strictly concave function
φ : R+ → R with φ(0) = 0 and increasing to infinity.
Assume that for every C > 0 we have the minorisation condition:
for some time t0, a probability distribution ν and α ∈ (0, 1), then
for all x with V (x) ≤ C

Pt0δx ≥ αν.
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Subgeometric Harris’s Theorem [Hairer ’16]

With these conditions we have

There exists a unique invariant measure µ for the Markov
process and it satisfies∫

φ(V (x))dµ ≤ D.

Let Hφ be the function defined by

Hφ =

∫ u

1

ds

φ(s)

then there exists a constant C such that for all ν

‖Ptν − µ‖TV ≤
Cν(V )

H−1
φ (t)

+
C

(φ ◦ H−1
φ )(t)

.
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Hypocoercivity of linear kinetic equations via
Harris’s Theorem

joint work with José A. Cañizo (U. Granada), Chuqi Cao
(Paris-Dauphine) and Josephine Evans (Paris-Dauphine)
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∂t f + v · ∇x f = Lf , (x , v) ∈ Td × Rd ,

∂t f + v · ∇x f − (∇xΦ · ∇v f ) = Lf , (x , v) ∈ Rd × Rd .

where

f = f (t, x , v) with time t ≥ 0,

L (generator of a stochastic semigroup) acts only on v ,

linear relaxation Boltzmann (linear BGK) operator
linear Boltzmann operator

Φ is a confining potential.
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We consider the linear relaxation Boltzmann equation,

in (x , v) ∈ Rd × Rd with Φ ∈ C2(Rd):

∂t f + v · ∇x f − (∇xΦ · ∇v f ) = Lf = L+f − f ,

L+f =

(∫
f (t, x , u)du

)
M(v), M(v) := (2π)−

d
2 e−

|v|2
2 .

(8)

in (x , v) ∈ Td × Rd with periodic B.C.:

∂t f + v · ∇x f = L+f − f , (9)

M.J. Cáceres, J.A. Carrillo, T. Goudon 2003: Convergence to
equilibrium in H1 at a rate faster than any function of t,

C. Mouhot, L. Neuman 2006; F. Hérau 2006; J. Dolbeault, C.
Mouhot, C. Schmeiser 2015: Convergence exponentially fast
in both H1 and L2 using hypocoercivity techniques.
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We consider the linear Boltzmann equation,

in (x , v) ∈ Rd × Rd with Φ ∈ C2(Rd):

∂t f +v ·∇x f−(∇xΦ · ∇v f ) = Q(f ,M), M(v) := (2π)−
d
2 e−

|v|2
2 ,

Q(f , g) =

∫
Rd

∫
Sd−1

B(|v−v∗|, σ)(f (v ′)g(v ′∗)−f (v)g(v∗))dσdv∗,

v ′ =
v + v∗

2
+
|v − v∗|

2
σ, v ′∗ =

v + v∗
2
− |v − v∗|

2
σ, (10)

in (x , v) ∈ Td × Rd with periodic B.C.:

∂t f + v · ∇x f = Q(f ,M), (11)
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Q is the Boltzmann operator

B is the collision kernel, assumed to be hard and s.t.

B(|v − v∗|, σ) = |v − v∗|γ b

(
σ · v − v∗
|v − v∗|

)
, (12)

for some γ ≥ 0.

b integrable in σ, uniformly positive on [−1, 1]; i.e. there
exists Cb > 0 s.t.

b(z) ≥ Cb for all z ∈ [−1, 1] (13)

B. Lods, C. Mouhot, G. Toscani 2008; M. Bisi, J.A. Cañizo,
B. Lods 2015; J.A. Cañizo, A. Einav, B. Lods 2017: Spatially
homogeneous case

C. Mouhot, L. Neuman 2006; J. Dolbeault, C. Mouhot, C.
Schmeiser 2015: Convergence exponentially fast in both H1

and L2 using hypocoercivity techniques.
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Theorem (Cañizo, Cao, Evans & Y. ’19): on the torus

Suppose that t 7→ ft is the solution to either linear BGK or linear
Boltzmann equation on the torus with initial data
f0 ∈ P(Td × Rd).
In the case of linear Boltzmann equation we also assume (12) with
γ ≥ 0, and (13). Then there exist constants C > 0, λ > 0
(independent of f0) such that

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗, (14)

where µ is the only equilibrium state of the corresponding equation
in P(Td × Rd) (that is, µ(x , v) =M(v)). The norm is the total
variation norm ‖ · ‖TV,

‖f0 − µ‖∗ = ‖f0 − µ‖TV :=

∫
Rd

∫
Td

|f0 − µ|dxdv for equation (9),

and it is a weigthed total variation norm,

‖f0 − µ‖∗ =

∫
Rd

∫
Td

(1 + |v |2)|f0 − µ|dxdv for equation (11).
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Idea of the proof:

t 7→ Tt f0 solves the equation ∂t f + v · ∇x f = 0 with initial
condition f0.

In this case: Tt f0(x , v) = f0(x − tv , v).

By Duhamel’s formula

et ft ≥
∫ t

0

∫ s

0
Tt−sL+Ts−rL+Tr f0drds.

Bound on the ’jump’ operator:
Lemma L: For all δL > 0 there exists αL > 0 s.t. for all
nonnegative functions g ∈ L1(Td × Rd) we have

L+g(x , v) ≥ αL

(∫
Rd

g(x , u)du

)
1{|v |≤δL},

and for almost all (x , v) ∈ Td × Rd .
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Idea of the proof:

Bound on the ’transport’ part:
Lemma T: Given any time t0 > 0 and radius R > 0 there
exists δL,R

′ > 0 s.t. for all t ≥ t0 it holds that∫
B(R′)

Tt

(
δx01{|v |≤δL}

)
dv ≥ 1

td
1{|x |≤R},

for all x0 with |x0| < R.

For the linear Boltzmann: suppose γ ≥ 0 st.

∂t f + v · ∇x f = L+f − σ(v)f ,

where σ(v) ≥ 0 and σ(v) behaves like |v |γ for large v , i.e.

0 ≤ σ(v) ≤ (1 + |v |2)γ/2 for v ∈ Rd .
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Theorem (Cañizo, Cao, Evans & Y. 19’): on Rd

Suppose that t 7→ ft is the solution to either linear BGK or linear
Boltzmann equation in the whole space with initial data
f0 ∈ P(Rd × Rd) and with a confining potential Φ ∈ C2(Rd)
bounded below s.t. for some positive constants γ1, γ2,A:

x · ∇xΦ(x) ≥ γ1|x |2 + γ2Φ(x)− A, x ∈ Rd .

In the case of linear Boltzmann equation we also assume (12), (13)
and for some positive constants γ1, γ2,A:

x · ∇xΦ(x) ≥ γ1〈x〉γ+2 + γ2Φ(x)− A, x ∈ Rd .
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Theorem (Cañizo, Cao, Evans & Y. ’19): on Rd

Then there exist constants C > 0, λ > 0 (independent of f0) such
that

‖ft − µ‖∗ ≤ Ce−λt‖f0 − µ‖∗ (15)

where µ is the only equilibrium state of the corresponding equation
in P(Rd × Rd),

dµ =M(v)e−Φ(x)dvdx .

The norm ‖ · ‖∗ is a weighted total variation norm defined by

‖ft − µ‖∗ :=

∫ (
1 +

1

2
|v |2 + Φ(x) + |x |2

)
|ft − µ|dvdx .
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Idea of the proof:

linear relaxation Boltzmann case:

Minorisation condition: instantaneously producing large
velocities under the action of φ.
Lyapunov condition is satisfied for:

V (x , v) = 1 + Φ(x) +
1

2
|v |2 +

1

4
x · v +

1

8
|x |2

under the given assumptions on Φ.

linear Boltzmann case:

Similar arguments for minorisation condition
Lyapunov condition: only Maxwell molecules case (γ = 0)
with the same functional above.
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Theorem (Cañizo, Cao, Evans & Y. ’19): subgeometric

Suppose that t 7→ ft is the solution to the linear BGK equation in
Rd with a confining potential Φ ∈ C2(Rd). Assume that for some
β in (0, 1), Φ satisfies for some positive constants γ1, γ2,A:

x · ∇xΦ(x) ≥ γ1〈x〉2β + γ2Φ(x)− A,

Then we have that there exists a constant C > 0 such that

‖ft − µ‖TV ≤ min

{
‖f0 − µ‖,

C

∫
f0(x , v)

(
1 +

1

2
|v |2 + Φ(x) + |x |2

)
(1 + t)−β/(1−β)

}
. (16)
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Theorem (Cañizo, Cao, Evans & Y. ’19): subgeometric

Suppose that t 7→ ft is the solution to the linear Boltzmann
equation in Rd , satisfies (12), (13) and for some positive constants
γ1, γ2,A, β, γ3:

x · ∇xΦ(x) ≥ γ1〈x〉β+1 + γ2Φ(x)− A, Φ(x) ≤ γ3〈x〉1+β,

Then we have that there exists a constant C > 0 such that

‖ft − µ‖TV ≤ min

{
‖f0 − µ‖,

C

∫
f0(x , v)

(
1 +

1

2
|v |2 + Φ(x) + |x |

)
(1 + t)−β

}
.

D. Bakry, P. Cattiaux, A. Guillin 2008; R. Douc, G. Fort, A.
Guillin 2009: C. Cao 2018: Subgeometric convergence for
kinetic Fokker-Planck equations with weak confinement
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Remarks:

We obtain via Harris’s Theorem

exponential convergence rates

on the d−dimesional torus
in the whole space with a confining potentials growing at least
quadratically at ∞.

algebraic convergence rates for subquadratic potentials

this is the only work showing this type of convergence in a
quantitative way for the equations we present.

in TV norms or weighted TV norms, (alternatively L1 or
weighted L1 norms)

for much wider range of initial conditions,

for initial conditions with slow decaying tails,
for measure initial conditions with very bad local regularity.

existence of stationary solutions under quite general conditions
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Asymptotic behaviour of neuron population
models structured by elapsed-time

joint work with José A. Cañizo (U. Granada)
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P. Gabriel 2017: Exponential convergence to equilibrium for
the conservative renewal equation

G. Dumont, P. Gabriel 2017: Exponential convergence to
equilibrium for leaky integrate-and-fire neuron model

V. Bansaye, B. Cloez, P.Gabriel 2017: Quantitative estimates
for some non-conservative and non-homogeneous positive
semigroups, new bounds on the homogeneous setting

V. Bansaye, B. Cloez, P.Gabriel, A. Marguet 2019:
Non-conservative semigroups, quantitative estimates based on
a non-homogenous h-transform of the semigroup and the
construction of Lyapunov functions.
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1. Age-structured neuron population model

∂

∂t
n(t, s) +

∂

∂s
n(t, s) + p(N(t), s)n(t, s) = 0, t, s ≥ 0,

N(t) := n(t, 0) =

∫ +∞

0
p(N(t), s)n(t, s)ds, t > 0,

n(0, s) = n0(s) ≥ 0, s > 0.

(17)

n(t, s) : a population density function giving the probability of
finding a neuron in state s at time t.

*s: time elapsed since the last discharge.

p(N, s) : firing rate of neurons in the the state s, in an
environment N resulting from the global neural activity.

N(t) : density of neurons having a discharge at time t.
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1. Age-structured neuron population model

Proposed in Pakdaman, Perthame & Salort 2010:

∂

∂t
n(t, s) +

∂

∂s
n(t, s) + p(X (t), s)n(t, s) = 0, t, s ≥ 0,

N(t) := n(t, 0) =

∫ +∞

0
p(X (t), s)n(t, s)ds, t > 0,

n(0, s) = n0(s) ≥ 0, s > 0.

where

X (t) = J

∫ u

0
α(u)N(t − u)du.
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1. Age-structured neuron population model
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2. Neuron population model with fatigue

Proposed in Pakdaman, Perthame & Salort 2014:

∂

∂t
n(t, s) +

∂

∂s
n(t, s) + p(N(t), s)n(t, s)

=

∫ +∞

0
κ(s, u)p(N(t), u)n(t, u)du, t, s ≥ 0,

n(t, s = 0) = 0, N(t) =

∫ +∞

0
p(N(t), s)n(t, s)ds,

n(t = 0, s) = n0(s) ≥ 0, s > 0.

(18)

where n(t, s), p(N, s) and N(t) same as before and
κ(s, u) ∈M(R+ × R+): distribution of neurons which take the
state s when a discharge occurs after an elapsed time u since their
last discharge.
κ(s, u) = δ0(s) recovers the first model.
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Properties

mass conservative: d
dt

∫ +∞
0 n(t, s)ds = 0.

positivity preserving.

n0(s) ∈ P,
∫ +∞

0 n0(s)ds = 1.

larger the stimulation neurons induce smaller the refractory
period.
i.e. excitatory network: ∂

∂N p(N, s) > 0.

κ(s, u) = δ0(s) in (18) we recover the first model.
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Assumptions

We make the following assumptions for models (17) and (18)(last
one is only for (18));

1 p ∈W 1,∞([0,+∞)× [0,+∞)), s.t. p(N, s) ≥ 0 ∀N, s ≥ 0,
with L being the smallest number s.t.
|p(N1, s)− p(N2, s)| ≤ L|N1 − N2| for N1,N2 ≥ 0 and s > 0.

2 ∃s∗, pmin, pmax > 0, ∀s ≥ 0, pmin1[s∗,∞) ≤ p(·, s) ≤ pmax.

3 ∂
∂s p(N, s) > 0, for all N, s ≥ 0.

4 For each u ≥ 0, κ(·, u) ∈ P(R+) supported on [0, u] and
∃ε > 0, 0 < δ < s∗ s.t. κ(·, u) ≥ ε1[0,δ] for all u ≥ s∗,∫ u

0 κ(s, u)ds = 1.
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Theorem (Cañizo & Y. ’18)

Suppose that (1)–(3) are satisfied for equation (17), or (1)–(4) for
equation (18). Suppose also that L is small enough depending on
p and κ. Let n0 be a probability measure on [0,+∞).
Then, there exists a unique probability measure n∗ which is a
stationary solution to (17) or (18), and there exist constants
C ≥ 1, λ > 0 depending only on p and κ such that the (mild or
weak) measure solution n = n(t) to (17)-(18) satisfies

‖n(t)− n∗‖TV ≤ Ce−λt‖n0 − n∗‖TV, for all t ≥ 0. (19)
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Remark:

Constants are constructive.
To be precise one can take

λ = λ1 − C̃ , C = C1 for (17),

λ = λ2 − C̃ , C = C2 for (18),

with β = pmine
−2pmaxs∗ and C̃ = 2pmax

L
1−L , where

C1 :=
1

1− s∗β
, λ1 = − log(1− s∗β)

2s∗

C2 :=
1

1− εδ(s∗ − δ)β
, λ2 = − log(1− εδ(s∗ − δ)β)

2s∗
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Remark:

Smallness condition on L can be written as

L < min

{
p2

min

p2
max (s∗pmin(s∗pmin + 2) + 2)

,
log(1− s∗β)

log(1− s∗β)− 4pmaxs∗

}
,

for (17) or

L < min

{
pminεδ(s∗ − δ)β

pminεδ(s∗ − δ)β + pmaxe4pmaxs∗
,

log(1− εδ(s∗ − δ))

log(1− εδ(s∗ − δ))− 4pmaxs∗

}
,

for (18).
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Idea of the proof:

1 Positive lower bound for solutions of the linear equation

2 Positive lower bound 1 =⇒ Doeblin condition satisfied

3 Doeblin condition =⇒ spectral gap

4 Pertubation argument applied to the linear equation =⇒
exponential relaxation to the stationary solution
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Idea of the proof for the main theorem:

Define two operators;

LN(t)n := ∂tn = −∂sn − p(N(t), s)n +

∫
κ(s, u)p(N(t), u)ndu.

LN∗n := −∂sn − p(N∗, s)n +

∫
κ(s, u)p(N∗, u)ndu.

∂tn(t, s) = LN(t)n(t, s) = LN∗n(t, s)− (LN∗ − LN(t))n(t, s)︸ ︷︷ ︸
:=h(t,s)

.

n(t, s) = Stn0(s) +
∫ t

0 St−τh(τ, s)dτ
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Idea of the proof for the main theorem:

∂tn(t, s) = LN(t)n(t, s) = LN∗n(t, s)− (LN∗ − LN(t))n(t, s)︸ ︷︷ ︸
:=h(t,s)

.

n(t, s)−n∗ = Stn0(s)−n∗ +
∫ t

0 St−τh(τ, s)dτ

‖n(t)−n∗‖TV ≤ ‖Stn0−n∗‖TV +
∥∥∥ ∫ t

0 St−τh(τ, s)dτ
∥∥∥
TV

.

”h” lemma: ‖h(t)‖TV ≤ C̃‖n(t)− n∗‖TV where C̃ calculated
explicitly.

Result by Grönwall’s argument:
‖n(t)− n∗‖TV ≤ Ce−(λ−C̃)t‖n0 − n∗‖TV.
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Proof of the ”h” lemma:

‖h(t)‖TV = ‖(LN∗ − LN(t))n(t, s)‖TV

≤ ‖(p(N(t), s)− p(N∗, s))n(t, s)‖TV+∥∥∥∫ +∞

0
κ(s, u)(p(N∗, u)− p(N(t), u))n(t, u)du

∥∥∥
TV

≤ L‖n(t)‖TV|N∗ − N(t)|+ L‖n(t)‖TV|N∗ − N(t)|

≤ 2pmax
L‖n(t)‖TV

1− L‖n(t)‖TV
‖n(t)− n∗‖TV

=
2pmaxL

1− L︸ ︷︷ ︸
C̃

‖n(t)− n∗‖TV
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Relaxation to equilibrium for the
growth-fragmentation equation by Harris’s

Theorem
joint work with José A. Cañizo (U. Granada) and Pierre Gabriel

(U. Versailles)
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The growth-fragmentation equation

∂

∂t
n(t, x) +

∂

∂x
(g(x)n(t, x))

=

∫ ∞
x

κ(y , x)n(t, y)dy − B(x)n(t, x), t, x ≥ 0,

coupled with n(t, 0) = 0, t > 0 and n(0, x) = n0(x), x > 0.

cell division, polymerisation, neurosciences, prion proliferation,
telecommunication (TCP, IP ), ecology...

unicellular organisms: age ??, elapsed-time ??, mass of the
cell X, length of the cell X, DNA content X, level of certain
proteins X

B(x) = 1 =⇒ mass is conserved.
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The growth-fragmentation equation

n(t, x): the population density of individuals structured by a
variable x > 0 at a time t ≥ 0.

g (0,+∞)→ (0,+∞) is the growth rate.

B: total division/fragmentation rate of individuals with size
x ≥ 0. → B(x) =

∫ y
0

y
x κ(x , y)dy .

κ(y , x): the rate at which individuals of size x are obtained as
the result of a fragmentation event of an individual of size y .

1 equal mitosis: κ(x , y) = B(x) 2
x δ{y= x

2 }.

∂tn(t, x) + ∂x(g(x)n(t, x) + B(x)n(t, x) = 4B(2x)n(t, 2x).

2 uniform fragmentation: κ(x , y) = B(x) 2
x
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Perron eigenvalue problem:

Finding suitable eigenelements (λ,N(x), φ(x)) which satisfy:

∂

∂x
(g(x)N(x)) + (B(x) + λ)N(x) =

∫ +∞

x
κ(x , y)N(y)dy ,

g(0)N(0) = 0, N(x) ≥ 0,

∫ +∞

0
N(x)dx = 1.

(20)

− g(x)
∂

∂x
φ(x) + (B(x) + λ)φ(x) =

∫ x

0
κ(y , x)φ(y)dy ,

φ(x) ≥ 0,

∫ +∞

0
φ(x)N(x)dx = 1.

(21)
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Scaled equation

scaling  m(t, x) := n(t, x)e−λt :

∂

∂t
m(t, x) +

∂

∂x
(g(x)m(t, x))

=

∫ ∞
x

κ(y , x)m(t, y)dy − (B(x) + λ)m(t, x), t, x ≥ 0,

m(t, 0) = 0, t > 0, m(0, x) = n0(x), x > 0. (22)

conserved quantity: d
dt

∫
φ(x)m(t, x)dx = 0.
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Assumptions

g (0,+∞)→ (0,+∞) is a locally Lipschitz.
There exists C > 0 such that g(x) ≤ Cx for all x ≥ 1.∫ 1

0
1

g(x)dx < +∞.
B (0,+∞)→ (0,+∞) s.t. B(x) −→

x→+∞
+∞.

Example: g(x) = xα where α ∈ [0, 1] and B(x) = xγ , where
γ > 0.

When g(x) = x : B(x) −→
x→0

0

[E. Bernard, M. Doumic & P. Gabriel 2019] mitosis with
g(x) = x  λk = 1 + 2ikπ

log 2 , k ∈ Z
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Thank you!
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