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Introduction
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Wolfgang (Vincent) Doeblin (1915-1940)

P.G. Bergman, J.L. Lebowitz 1955: Convergence to
equilibrium for scattering equations with non-equilibrium
steady states by using Doeblin's Theorem (non-quantitative)

T. E. Harris 1956: Conditions for existence and uniqueness of
a steady state for a Markov process

@ S. P. Meyn, R. L. Tweedie 1993: Exponential convergence to
equilibrium
e J.C. Mattingly, A. M. Stuart, D.J. Higham 2001: Convergence

to equilibrium for the kinetic Fokker-Planck equation
(non-quantitative)
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e M. Hairer, J. Mattingly 2011: Simplified proof using mass
transport distances,
Quantitative rates for convergence to equilibrium once
assumptions verified quantitatively

e E.A. Carlen, R. Esposito, J.L. Lebowitz, R. Marra, C. Mouhot
2016: Exponential convergence to a non-equilibrium steady
state for some non-linear kinetic equations on the torus by
using Doeblin’s Theorem (quantitative)
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e (Q,F) : measurable space with Borel c—algrebra,
e M(Q) : space of finite measures on (£, F),
e P(R) : space of probability measures on (9, F).
@ Markov process x on a state space {2 ~ transition probability
functions
e 5:Q xS+ Ris a transition probability function on a finite
measure space if
@ S(x,-) is a probability measure for every x € Q,
@ x — S(x,A) is a measurable function for every A € S.



@ Stochastic/ Markov operator on probability measures
P :Q — P(Q) acting on

@ the space of finite measures on Q:

(Pu)(A) = /Q S(x, A)(dx),

@ the space of bounded measurable functions ¢ : Q — [0, c0):

(Po)(x) = /Q ()5 (x. dy).

@ continuous time Markov processes ~ a family of Markov
transition kernels / semigroup

o P : M(Q) — M(RQ), linear, mass and positivity preserving,
satisfying
@ the semigroup property: Psi; = PsPy, for all t,s > 0.
@ Py is the identity.

@ P:p is the weak solution to the PDE with initial data p.

6 /49
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Hypothesis 1: Doeblin’s condition

We assume that (P¢)¢>0 is a stochastic semigroup, defined
through a Markov transition probability function, and that there
exists tp > 0, a probability distribution v and « € (0, 1) such that
for any x in the state space €2 we have

P05 > av. (1)



Introduction
000®000000

Doeblin's Theorem

If we have a stochastic semigroup (P¢)¢>0 satisfying Doeblin's
condition then for any two measures 11 and o and any integer
n > 0 we have that

[Pgu1 — Pypollry < (1 —a)”(lus — poflrv. (2)

As a consequence, the semigroup has a unique equilibrium
probability measure i, and for all u

1Pe(p = )TV < e Mlp—plrv,  t20, (3)

T 1l-«o

where g (1
A= loslma)
to
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Hypothesis 2: Lyapunov condition

There exists some function V : Q — [0, 00) and constants
D >0,v € (0,1) such that

Py (V)(x) <7V(x) + D. (4)

e This is equivalent to the statement with v = e~ and
D = K(1 - e70) < Kty:

/ f(to, x)V(x)dx < 'y/ f(0,x)V(x)dx + D. (5)
Q

Q

° % Jo F(t,x)V(x)dx < =X [ f(t,x)V(x)dx + K.
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Hypothesis : 'local’ Doeblin-like condition

There exists a probability measure v and a constant « € (0, 1)
such that
;22 Ptodx Z av, (6)

where
C={x:V(x) <R}

for some R > %.

10/49
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@ Distance on probability measures for every 5 > 0 defined as

patinnz) = [+ VOOl = pol ().

@ A weighted supremum norm for every measurable function ¢
for every 8 > 0 as in

_ (%)
[p(x)[l = Slip m

11/49
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Harris's Theorem

If Hypotheses 4 and 6 hold then there exist @ € (0,1) and § > 0
such that

Pﬁ(PtoML Pto,UQ) S aPﬂ(Hla /'LZ) (7)
C 2D
e Explicitly if we choose € € (0,«) and 6 € | v+ = 1),

then we can set

G _ 24+ RBd
B—Danda—max{l o+ €, 2+ RB }

12 /49
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Subgeometric Harris's Theorem [Hairer '16]

Given the forwards operator, £ of the stochastic semigroup P; s.t.
. d

L= Esf(b't:O’

suppose that there exists a continuous function V valued in [1, c0)

with pre compact level sets such that

LV <K —¢(V),

for some constant K and some strictly concave function

¢ : Ry — R with ¢(0) = 0 and increasing to infinity.

Assume that for every C > 0 we have the minorisation condition:
for some time ty, a probability distribution v and « € (0, 1), then
for all x with V(x) < C

Piydx > awv.

13 /49
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Subgeometric Harris's Theorem [Hairer '16]

With these conditions we have

@ There exists a unique invariant measure p for the Markov
process and it satisfies

/¢( V(x))du < D.

@ Let H be the function defined by
Y ds
o(s)
then there exists a constant C such that for all v
CV(V) C
V > + 1 .
H (1) (¢o Hy)(1)

Hy =

|Pev — |t

14 /49



Linear kinetic equations

Hypocoercivity of linear kinetic equations via

Harris's Theorem
joint work with José A. Caiiizo (U. Granada), Chuqi Cao
(Paris-Dauphine) and Josephine Evans (Paris-Dauphine)

15 /49



Linear kinetic equations

Of +v-Vyf =Lf, (x,v)eT xR,
Of +v-Vyef —(Vyi® -V, f)=LF, (x,v)eRIxRY.

where
o f = f(t, x,v) with time t > 0,
@ L (generator of a stochastic semigroup) acts only on v,

o linear relaxation Boltzmann (linear BGK) operator
o linear Boltzmann operator

@ ® is a confining potential.

16 /49
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We consider the linear relaxation Boltzmann equation,
e in (x,v) € RY x RY with ¢ € C2(RY):

Of +v - Vof — (Ved -V f) = Lf = LTF — f,

|v|?

L = (/ F(t, x, u)du> M(v), M(v):=(2r) 2e =
(8)

e in (x,v) € TY x R? with periodic B.C.:

Of +v - Vof =LTF—F, (9)

e M.J. Caceres, J.A. Carrillo, T. Goudon 2003: Convergence to
equilibrium in H! at a rate faster than any function of t,

@ C. Mouhot, L. Neuman 2006; F. Hérau 2006; J. Dolbeault, C.
Mouhot, C. Schmeiser 2015: Convergence exponentially fast

in both H! and L2 using hypocoercivity techniques.
17 /49
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We consider the linear Boltzmann equation,
e in (x,v) € RY x RY with ® € C2(RY):

vI2
O Hv-Vuf (V@ Vuf) = QU M), M(v) = (2m) Fe

Q(f.¢) /Rd /d 1 [v—wil, o) (F(V')g(vi)—F(v)g(v:))dodvs,

;o VH Ve V= v , VE Ve |v— v
_ _ _ 1
v T 0 W 5 >0 (10)

e in (x,v) € TY x R? with periodic B.C.:

Otf + v - Vif = Q(f, M), (11)

17 /49
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@ Q is the Boltzmann operator

@ B is the collision kernel, assumed to be hard and s.t.

By vlo) = v v b (o T2 ) (2)
for some v > 0.

@ b integrable in o, uniformly positive on [—1,1]; i.e. there
exists Cp > 0 s.t.

b(z) > Cp for all z € [-1,1] (13)

@ B. Lods, C. Mouhot, G. Toscani 2008; M. Bisi, J.A. Canizo,
B. Lods 2015; J.A. Caiiizo, A. Einav, B. Lods 2017: Spatially
homogeneous case

@ C. Mouhot, L. Neuman 2006; J. Dolbeault, C. Mouhot, C.
Schmeiser 2015: Convergence exponentially fast in both H*
and L? using hypocoercivity techniques.

18 /49
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Theorem (Cafiizo, Cao, Evans & Y. '19): on the torus

Suppose that t — f; is the solution to either linear BGK or linear
Boltzmann equation on the torus with initial data
fo € P(T9 x RY).
In the case of linear Boltzmann equation we also assume (12) with
~v >0, and (13). Then there exist constants C >0, A > 0
(independent of fy) such that

I1fe = ulls < Ce™*lfo — p], (14)

where o is the only equilibrium state of the corresponding equation
in P(T9 x RY) (that is, u(x,v) = M(v)). The norm is the total
variation norm || - ||1v,

o~ ulle =~ llry = [ | [ 1o~ nldxdv for cquation (9)
R4 JTd

and it is a weigthed total variation norm,

Ifo — plls = / / (1+ |v|?)|fy — p|dxdv for equation (11).
Rd JTd

19 /49
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Idea of the proof:

@ t > T;:fy solves the equation 0;f + v - Vf = 0 with initial
condition fy.

@ In this case: T;fy(x,v) = fo(x — tv, v).

@ By Duhamel's formula

t s
elf, > / / T o LT T LT T, fodrds.
o Jo

@ Bound on the "jump’ operator:
Lemma L: For all §; > 0 there exists a; > 0 s.t. for all
nonnegative functions g € L}(T9 x R?) we have

crete) = an ([ eteo)dn) 1.

and for almost all (x,v) € TY x R9 .

20 /49
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Idea of the proof:

@ Bound on the 'transport’ part:
Lemma T: Given any time ty > 0 and radius R > 0 there
exists 0;, R' > 0 s.t. for all t > tg it holds that

1
/B(R,) Te (G Lvi<ary) AV = 5 1x<ry,

for all xp with x| < R.
@ For the linear Boltzmann: suppose v > 0 st.

Of + v -Vuf = LTf — a(V)f,
where o(v) > 0 and o(v) behaves like |v|7 for large v, i.e.
0<o(v)<(1+4|v[?)? for v e R,

21 /49
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Theorem (Cafiizo, Cao, Evans & Y. 19'): on R

Suppose that t — f; is the solution to either linear BGK or linear
Boltzmann equation in the whole space with initial data

fo € P(RY x R?) and with a confining potential ® € C?(R9)
bounded below s.t. for some positive constants 1,72, A:

X - Vx®(x) > y1|x|? +729(x) — A, x € RY.

In the case of linear Boltzmann equation we also assume (12), (13)
and for some positive constants 1,72, A:

X Vi®(x) 2 11(0)772 +70d(x) — A, xR
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Theorem (Cafiizo, Cao, Evans & Y. '19): on R

Then there exist constants C > 0, A > 0 (independent of fy) such
that

1fe = pll < Ce™1fy — palls (15)

where p is the only equilibrium state of the corresponding equation
in P(RY x RY),
dp = M(v)e~*®dvdx.

The norm || - ||« is a weighted total variation norm defined by

1
lfe — pll« = / <1 + §|v|2 + d(x) + ]X\2> |fe — p|dvdx.

23 /49
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Idea of the proof:

@ linear relaxation Boltzmann case:

e Minorisation condition: instantaneously producing large
velocities under the action of ¢.
e Lyapunov condition is satisfied for:

1 1 1
V(x,v) =14 0(q) + Svf + 2x- v+ 22

under the given assumptions on ®.
@ linear Boltzmann case:

e Similar arguments for minorisation condition
o Lyapunov condition: only Maxwell molecules case (v = 0)
with the same functional above.

24 /49
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Theorem (Cafiizo, Cao, Evans & Y. '19): subgeometric

Suppose that t — f; is the solution to the linear BGK equation in
R? with a confining potential ® € C2(R9). Assume that for some
S in (0,1), ® satisfies for some positive constants 71, y2, A:

x - Vy®(x) > 71(x)%8 + 1,0(x) — A,
Then we have that there exists a constant C > 0 such that

1 — llrv < min {nfo ol

C/fo(x, V) <l+;]v|2+¢(x)+]x]2> (1+t)ﬂ/<1ﬂ>}. (16)

25 /49
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Theorem (Cafiizo, Cao, Evans & Y. '19): subgeometric

Suppose that t — f; is the solution to the linear Boltzmann
equation in RY, satisfies (12), (13) and for some positive constants

Y1572, A7 67 Y3:
x - Ve®(x) > 71 (x)P 4 pd(x) — A, d(x) < 43() 7,

Then we have that there exists a constant C > 0 such that
= ey < min {15~

C/fo(x, V) (1 SR+ 00 + \xy) (1+ t)—ﬁ}.

e D. Bakry, P. Cattiaux, A. Guillin 2008; R. Douc, G. Fort, A.
Guillin 2009: C. Cao 2018: Subgeometric convergence for
kinetic Fokker-Planck equations with weak confinement

26 /49
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Remarks:

We obtain via Harris's Theorem
@ exponential convergence rates

e on the d—dimesional torus
@ in the whole space with a confining potentials growing at least
quadratically at oco.

@ algebraic convergence rates for subquadratic potentials
o this is the only work showing this type of convergence in a
quantitative way for the equations we present.
@ in TV norms or weighted TV norms, (alternatively LY or
weighted L' norms)
o for much wider range of initial conditions,
e for initial conditions with slow decaying tails,
e for measure initial conditions with very bad local regularity.

@ existence of stationary solutions under quite general conditions

27 /49
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Asymptotic behaviour of neuron population

models structured by elapsed-time
joint work with José A. Caiizo (U. Granada)

28 /49
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o P. Gabriel 2017: Exponential convergence to equilibrium for
the conservative renewal equation

@ G. Dumont, P. Gabriel 2017: Exponential convergence to
equilibrium for leaky integrate-and-fire neuron model

e V. Bansaye, B. Cloez, P.Gabriel 2017: Quantitative estimates
for some non-conservative and non-homogeneous positive
semigroups, new bounds on the homogeneous setting

@ V. Bansaye, B. Cloez, P.Gabriel, A. Marguet 2019:
Non-conservative semigroups, quantitative estimates based on
a non-homogenous h-transform of the semigroup and the
construction of Lyapunov functions.

29 /49
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1. Age-structured neuron population model

B
N(t) := n(t,0) = /m p(N(t),s)n(t,s)ds, t>0, (7)
0

aatn(t, )+ %n(t,s) + p(N(E), s)n(t,s) =0, 5> 0,

n(0,s) = no(s) >0, s>0.

e n(t,s): a population density function giving the probability of
finding a neuron in state s at time t.
@ *s: time elapsed since the last discharge.

e p(N,s) : firing rate of neurons in the the state s, in an
environment N resulting from the global neural activity.

e N(t) : density of neurons having a discharge at time t.

30 /49
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1. Age-structured neuron population model

Proposed in Pakdaman, Perthame & Salort 2010:

d d
—_ — = >
6tn(t, s)+ 8sn(t, s)+ p(X(t),s)n(t,s) =0, t,s>0,

+oo
N(t) = n(t,0) /0 p(X(£), $)n(t, s)ds, ¢ >0,
n(0,s) = no(s) >0, s>0.

where

X(t) = J/Oua(u)N(t ~ u)du.

31/49
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1. Age-structured neuron population model
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2. Neuron population model with fatigue

Proposed in Pakdaman, Perthame & Salort 2014:

gtn(t,s) + aasn(t, s) + p(N(t),s)n(t,s)

+oo
_ /0 (s DN (s £520.
400
lts=0)=0, N(©)= [ p(N(t),9n(t,s)ds.
0
n(t=0,s) =no(s) >0, s>0.

where n(t,s), p(N,s) and N(t) same as before and

(s, u) € M(R" x R"): distribution of neurons which take the
state s when a discharge occurs after an elapsed time u since their
last discharge.

k(s, u) = do(s) recovers the first model.

33 /49
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Properties

@ mass conservative: f =0.

@ positivity preservmg

e ny(s) € P, fo s)ds = 1.

@ larger the stlmulat|on neurons induce smaller the refractory
period.

i.e. excitatory network: %p(N, s) > 0.
o k(s,u) = do(s) in (18) we recover the first model.

34 /49
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Assumptions

We make the following assumptions for models (17) and (18)(last
one is only for (18));

@ p e Wr>([0,+0c0) x [0, +0)), s.t. p(N,s) >0 VN,s >0,
with L being the smallest number s.t.
|p(N1, s) — p(Na, s)| < L|Ny — Np| for Ny, N >0 and s > 0.
@ Is., Pmin, Pmax >0, Vs >0, Pmin]l[s*,oo) < p(‘vs) < Pmax-
o %p(N,s) > 0, for all N,s > 0.
Q For each u >0, x(-,u) € P(R™) supported on [0, u] and
Je > 0,0 < 0 < s.st k(u)> eljpg) for all u > s,,
Jo #(s, u)ds = 1.

35 /49
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Theorem (Cafiizo & Y. '18)

Suppose that (1)—(3) are satisfied for equation (17), or (1)—(4) for
equation (18). Suppose also that L is small enough depending on
p and k. Let ng be a probability measure on [0, +00).

Then, there exists a unique probability measure n, which is a
stationary solution to (17) or (18), and there exist constants

C > 1, A > 0 depending only on p and « such that the (mild or
weak) measure solution n = n(t) to (17)-(18) satisfies

In(t) — n|ltv < Ce ||ng — ny||pv, forall t > 0. (19)

36 /49
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Remark:

Constants are constructive.
To be precise one can take

A=\ —-C, C=( for(17),
A=X—C, C=G for(18),

with 8 = pmine 2PmS* and C= 2Pmax1TL,_, where

o 1 B log(1 — s./3)
G= 1-s.3’ A= 2s,
C e 1 N — _ log(1 —€d(ss — 6)B)
2T 1 €d(s, — 0)B’ 2= 2s,

37 /49
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Remark:

Smallness condition on L can be written as

2. log(1 — s.
L < min { 5 Pmin ; cg(l —s.F) }7
Paax (S+Pmin(S+Pmin +2) +2) " log(1 — 5,3) — 4PmaxSs

for (17) or

; pmine(s(s* — 5)5

L < min {Pmineé(s* - 6)/8 + pmaxe4pmax5* ’
log(1 — €d(s« — 9))

|Og(1 - 66(5* - 6)) — 4 PmaxS« ’

for (18).

38 /49
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Idea of the proof:

@ Positive lower bound for solutions of the linear equation
@ Positive lower bound 1 = Doeblin condition satisfied
© Doeblin condition = spectral gap

@ Pertubation argument applied to the linear equation —-
exponential relaxation to the stationary solution

39 /49
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Idea of the proof for the main theorem:

@ Define two operators;
Lyeyn := 0rn = —0sn — p(N(t), s)n + / k(s, u)p(N(t), u)ndu.

Ly, n:=—0sn— p(Ny,s)n+ //@(s, u)p(Ny, u)ndu.

40 /49
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Idea of the proof for the main theorem:

@ Define two operators;
Lyeyn := 0rn = —0sn — p(N(t), s)n + / k(s, u)p(N(t), u)ndu.
Ly, n:=—0sn— p(Ny,s)n+ //@(s, u)p(Ny, u)ndu.

° 8tn(t, S) = EN(t)n(t, S) =L, n(t, S) — (ﬁN* — EN(t))n(t, S).

:=h(t,s)

40 /49
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Idea of the proof for the main theorem:

@ Define two operators;

Lyeyn := 0rn = —0sn — p(N(t), s)n + / k(s, u)p(N(t), u)ndu.

Ly, n:=—0sn— p(Ny,s)n+ /m(s, u)p(Ny, u)ndu.

° 8tn(t, S) = EN(t)n(t, S) =L, n(t, S) — (ﬁN* — EN(t))n(t, S).

:=h(t,s)

o n(t,s) = Seno(s) + [y Se—rh(r,s)dr

40 /49
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Idea of the proof for the main theorem:

© 0in(t,s) = Lyyn(t,s) = Ln,n(t,s) — (Ln, — Ln(e))n(t,s).

:=h(t,s)
o n(t,s)—n. = Seno(s)—n. + fot St—rh(r,s)dr

41/49
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Idea of the proof for the main theorem:

© 0in(t,s) = Lyyn(t,s) = Ln,n(t,s) — (Ln, — Ln(e))n(t,s).

:=h(t,s)

o n(t,s)—n. = Seno(s)—n. + fot St—rh(r,s)dr

o lIn(t)=nllev < Seno—n.lizy + | fi Se-sh(r s)ar| .

41/49
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Idea of the proof for the main theorem:

© 0in(t,s) = Lyyn(t,s) = Ln,n(t,s) — (Ln, — Ln(e))n(t,s).

:=h(t,s)
o n(t,s)—n. = Seno(s)—n. + fot St—rh(r,s)dr

o lIn(t)=nllev < Seno—n.lizy + | fi Se-sh(r s)ar| .

o "' lemma: ||h(t)||ltv < C||n(t) — ny|lTv where € calculated
explicitly.

41/49
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Idea of the proof for the main theorem:

Oen(t,s) = Lyyn(t,s) = Ly, n(t,s) — (Ln, — Lcey)n(t,s).

:=h(t,s)

n(t,s)—n. = Seno(s)—n. + fot St—rh(r,s)dr

In(e)rnuliry < 1Seno— ey + | Ji Se—rh(r,s)ar| .

" lemma: ||h(t)||tv < C||n(t) — n.||Tv where C calculated
explicitly.

Result by Gronwall’s argument:
In(t) = nllrv < Ce=O=ng — nflrv.

41/49



Structured population dynamics
0000000000000

Proof of the " h" lemma:

Ih(®)llrv = I(£n. = Lngy)n(t, s)l v
< [[(p(N(t), s) = p(Nx, s))n(t, s)|lrv+

H /0+°° (s, 0)(p(Ne, ) — p(N(E), )n(t, u)du|

< Ln(8)[[rv[Ne = N(£)] + Llin(t)[[rv|Ne — N(2)|

L{|n(t)(|v
2 n(t) — ny
— pmaxl_ L”n(t)HTVH ( ) ”TV
2pmaxL

1-1L
——
¢

In(t) = v

42 /49
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Relaxation to equilibrium for the
growth-fragmentation equation by Harris's

Theorem
joint work with José A. Caiizo (U. Granada) and Pierre Gabriel
(U. Versailles)
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The growth-fragmentation equation

Batn(t,x) + aax(g(x)n(t,x))
= [ (e )y~ Bn(ex), tx=0

coupled with n(t,0) = 0,t > 0 and n(0, x) = ng(x),x > 0.

@ cell division, polymerisation, neurosciences, prion proliferation,
telecommunication (TCP, IP ), ecology...

@ unicellular organisms: age 7?7, elapsed-time 77, mass of the
cell v/, length of the cell v/, DNA content v/, level of certain
proteins v’

@ B(x) =1 = mass is conserved.

44 /49
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The growth-fragmentation equation

e n(t,x): the population density of individuals structured by a
variable x > 0 at a time t > 0.

e g (0,+00) — (0,+00) is the growth rate.

e B: total division/fragmentation rate of individuals with size
x> 0. = B(x) = [ £k(x,y)dy.

e r(y,x): the rate at which individuals of size x are obtained as
the result of a fragmentation event of an individual of size y.

@ equal mitosis: r(x,y) = B(x)2d(,—x}.
Oen(t, x) + Ox(g(x)n(t, x) + B(x)n(t, x) = 4B(2x)n(t, 2x).

@ uniform fragmentation: x(x,y) = B(x)2
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Perron eigenvalue problem:

Finding suitable eigenelements (A, N(x), ¢(x)) which satisfy:

) +o0
&((g(X)N(X)H(B(X)JrA)N(X)Z/X K(x, y)N(y)dy,

g(O)N(0) =0, N(x) >0, /O N(x)dx = 1.
— 6(x) 500 + () + N6(x) = [ n(y. x)o()dy.
: (1)

46 /49



Structured population dynamics
0000®00

Scaled equation

o scaling ~ m(t,x) := n(t,x)e ™t :

9 it + 2 (g()m(t, x)

= /oo k(y,x)m(t,y)dy — (B(x) + A\)m(t,x), t,x >0,
m(t,0)=0, t>0, m(0,x)=no(x), x>0. (22)

o conserved quantity: <& [ ¢(x)m(t,x)dx = 0.
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Assumptions

e g (0,400) — (0,400) is a locally Lipschitz.
There exists C > 0 such that g(x) < Cx for all x > 1.
fo Fogdx < +oo.

e B (0, +oo) — (0, 400) s.t. B(x) — +o0.
X—>1+00
e Example: g(x) = x“ where a € [0, 1] and B(x) = x7, where
v > 0.
e When g(x) = x: B(x) — 0
x—0
e [E. Bernard, M. Doumic & P. Gabriel 2019] mitosis with

g(X):XwAk:].—i-lzolgg,kGZ
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Thank you!
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