Harris's Theorem and its applications to some kinetic and biological modes

Havva Yoldaş

Basque Center for Applied Mathematics (BCAM) - University of Granada

Workshop: Qualitative behaviour of kinetic equations and related problems: numerical and theoretical aspects
Hausdorff Research Institute for Mathematics
Bonn, June 6, 2019

Outline

- Introduction
 - Some history
 - Harris's Theorem
- 2 Linear kinetic equations
 - Linear BGK, Linear Boltzmann equations
 - Convergence results
- Structured population dynamics
 - Elapsed-time structured neuron population models
 - Size structured population models

- Wolfgang (Vincent) Doeblin (1915-1940)
- P.G. Bergman, J.L. Lebowitz 1955: Convergence to equilibrium for scattering equations with non-equilibrium steady states by using Doeblin's Theorem (non-quantitative)
- T. E. Harris 1956: Conditions for existence and uniqueness of a steady state for a Markov process
- S. P. Meyn, R. L. Tweedie 1993: Exponential convergence to equilibrium
- J.C. Mattingly, A. M. Stuart, D.J. Higham 2001: Convergence to equilibrium for the kinetic Fokker-Planck equation (non-quantitative)

- M. Hairer, J. Mattingly 2011: Simplified proof using mass transport distances,
 <u>Quantitative</u> rates for convergence to equilibrium once assumptions verified quantitatively
- E.A. Carlen, R. Esposito, J.L. Lebowitz, R. Marra, C. Mouhot 2016: Exponential convergence to a non-equilibrium steady state for some non-linear kinetic equations on the torus by using Doeblin's Theorem (quantitative)

- (Ω, \mathcal{F}) : measurable space with Borel σ -algrebra,
- $\mathcal{M}(\Omega)$: space of finite measures on (Ω, \mathcal{F}) ,
- $\mathcal{P}(\Omega)$: space of probability measures on (Ω, \mathcal{F}) .
- Markov process x on a state space $\Omega \approx transition probability functions$
- $S: \Omega \times \mathcal{S} \mapsto \mathbb{R}$ is a *transition probability function* on a finite measure space if
 - **1** $S(x, \cdot)$ is a probability measure for every $x \in \Omega$,
 - ② $x \mapsto S(x, A)$ is a measurable function for every $A \in S$.

- Stochastic/ Markov operator on probability measures $P:\Omega \to \mathcal{P}(\Omega)$ acting on
 - **1** the space of finite measures on Ω :

$$(P\mu)(A) = \int_{\Omega} S(x, A)\mu(\mathrm{d}x),$$

2 the space of bounded measurable functions $\varphi: \Omega \to [0, \infty)$:

$$(P\varphi)(x) = \int_{\Omega} \varphi(y) S(x, dy).$$

- continuous time Markov processes ≈ a family of Markov transition kernels / semigroup
- $P_t: \mathcal{M}(\Omega) \to \mathcal{M}(\Omega)$, linear, mass and positivity preserving, satisfying
 - 1 the semigroup property: $P_{s+t} = P_s P_t$, for all $t, s \ge 0$.
 - \bigcirc P_0 is the identity.
- $P_t\mu$ is the weak solution to the PDE with initial data μ .

Hypothesis 1: Doeblin's condition

We assume that $(P_t)_{t\geq 0}$ is a stochastic semigroup, defined through a Markov transition probability function, and that there exists $t_0>0$, a probability distribution ν and $\alpha\in(0,1)$ such that for any x in the state space Ω we have

$$P_{t_0}\delta_{\mathsf{x}} \geq \alpha \nu.$$
 (1)

Doeblin's Theorem

If we have a stochastic semigroup $(P_t)_{t\geq 0}$ satisfying Doeblin's condition then for any two measures μ_1 and μ_2 and any integer $n\geq 0$ we have that

$$||P_{t_0}^n \mu_1 - P_{t_0}^n \mu_2||_{\text{TV}} \le (1 - \alpha)^n ||\mu_1 - \mu_2||_{\text{TV}}.$$
 (2)

As a consequence, the semigroup has a unique equilibrium probability measure μ_* , and for all μ

$$||P_t(\mu - \mu_*)||_{\text{TV}} \le \frac{1}{1 - \alpha} e^{-\lambda t} ||\mu - \mu_*||_{\text{TV}}, \qquad t \ge 0,$$
 (3)

where

$$\lambda := \frac{\log(1-\alpha)}{t_0} > 0.$$

Hypothesis 2: Lyapunov condition

There exists some function $V:\Omega\to [0,\infty)$ and constants $D\geq 0,\gamma\in (0,1)$ such that

$$P_{t_0}(V)(x) \le \gamma V(x) + D. \tag{4}$$

• This is equivalent to the statement with $\gamma=e^{-\lambda t_0}$ and $D=\frac{\kappa}{\lambda}(1-e^{-\lambda t_0})\leq Kt_0$:

$$\int_{\Omega} f(t_0, x) V(x) dx \le \gamma \int_{\Omega} f(0, x) V(x) dx + D.$$
 (5)

• $\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} f(t,x) V(x) \mathrm{d}x \le -\lambda \int_{\Omega} f(t,x) V(x) \mathrm{d}x + K.$

Hypothesis: 'local' Doeblin-like condition

There exists a probability measure ν and a constant $\alpha \in (0,1)$ such that

$$\inf_{\mathbf{x}\in\mathcal{C}} P_{t_0} \delta_{\mathbf{x}} \ge \alpha \nu,\tag{6}$$

where

$$\mathcal{C} = \{x : V(x) \le R\}$$

for some $R > \frac{2D}{1-\gamma}$.

• Distance on probability measures for every $\beta > 0$ defined as

$$\rho_{\beta}(\mu_1, \mu_2) = \int (1 + \beta V(x)) |\mu_1 - \mu_2| (\mathrm{d}x).$$

• A weighted supremum norm for every measurable function φ for every $\beta>0$ as in

$$\|\varphi(x)\| = \sup_{x} \frac{|\varphi(x)|}{1 + \beta V(x)}.$$

Harris's Theorem

If Hypotheses 4 and 6 hold then there exist $\bar{\alpha} \in (0,1)$ and $\beta > 0$ such that

$$\rho_{\beta}(\mathcal{P}_{t_0}\mu_1, \mathcal{P}_{t_0}\mu_2) \le \bar{\alpha}\rho_{\beta}(\mu_1, \mu_2). \tag{7}$$

 $\begin{array}{l} \bullet \ \ \text{Explicitly if we choose} \ \epsilon \in (0,\alpha) \ \text{and} \ \delta \in \left(\gamma + \frac{2D}{R},1\right), \\ \text{then we can set} \\ \beta = \frac{\epsilon}{D} \ \text{and} \ \bar{\alpha} = \max \left\{1 - \alpha + \epsilon, \frac{2 + R\beta\delta}{2 + R\beta}\right\}. \end{array}$

Subgeometric Harris's Theorem [Hairer '16]

Given the forwards operator, \mathcal{L} of the stochastic semigroup P_t s.t.

$$\mathcal{L}\phi:=\left.\frac{\mathrm{d}}{\mathrm{d}t}S_t\phi\right|_{t=0},$$

suppose that there exists a continuous function V valued in $[1,\infty)$ with pre compact level sets such that

$$\mathcal{L}V \leq K - \phi(V),$$

for some constant K and some strictly concave function $\phi: \mathbb{R}_+ \to \mathbb{R}$ with $\phi(0) = 0$ and increasing to infinity. Assume that for every C > 0 we have the minorisation condition: for some time t_0 , a probability distribution ν and $\alpha \in (0,1)$, then for all x with V(x) < C

$$P_{t_0}\delta_x \geq \alpha\nu.$$

Subgeometric Harris's Theorem [Hairer '16]

With these conditions we have

ullet There exists a unique invariant measure μ for the Markov process and it satisfies

$$\int \phi(V(x)) \mathrm{d}\mu \leq D.$$

• Let H_{ϕ} be the function defined by

$$H_{\phi} = \int_{1}^{u} rac{\mathrm{d}s}{\phi(s)}$$

then there exists a constant C such that for all ν

$$||P_t \nu - \mu||_{\text{TV}} \le \frac{C \nu(V)}{H_{\phi}^{-1}(t)} + \frac{C}{(\phi \circ H_{\phi}^{-1})(t)}.$$

Hypocoercivity of linear kinetic equations via Harris's Theorem

joint work with **José A. Cañizo** (U. Granada), **Chuqi Cao** (Paris-Dauphine) and **Josephine Evans** (Paris-Dauphine)

$$\partial_t f + v \cdot \nabla_x f = \mathcal{L}f, \quad (x, v) \in \mathbb{T}^d \times \mathbb{R}^d,$$
$$\partial_t f + v \cdot \nabla_x f - (\nabla_x \Phi \cdot \nabla_v f) = \mathcal{L}f, \quad (x, v) \in \mathbb{R}^d \times \mathbb{R}^d.$$

where

- f = f(t, x, v) with time $t \ge 0$,
- \mathcal{L} (generator of a stochastic semigroup) acts only on v,
 - linear relaxation Boltzmann (linear BGK) operator
 - linear Boltzmann operator
- Φ is a confining potential.

We consider the linear relaxation Boltzmann equation,

• in $(x, v) \in \mathbb{R}^d \times \mathbb{R}^d$ with $\Phi \in \mathcal{C}^2(\mathbb{R}^d)$:

$$\partial_{t}f + v \cdot \nabla_{x}f - (\nabla_{x}\Phi \cdot \nabla_{v}f) = \mathcal{L}f = \mathcal{L}^{+}f - f,$$

$$\mathcal{L}^{+}f = \left(\int f(t,x,u)du\right)\mathcal{M}(v), \quad \mathcal{M}(v) := (2\pi)^{-\frac{d}{2}}e^{-\frac{|v|^{2}}{2}}.$$
(8)

• in $(x, v) \in \mathbb{T}^d \times \mathbb{R}^d$ with periodic B.C.:

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \mathcal{L}^+ f - f, \tag{9}$$

- M.J. Cáceres, J.A. Carrillo, T. Goudon 2003: Convergence to equilibrium in H^1 at a rate faster than any function of t,
- C. Mouhot, L. Neuman 2006; F. Hérau 2006; J. Dolbeault, C. Mouhot, C. Schmeiser 2015: Convergence exponentially fast in both H¹ and L² using hypocoercivity techniques.

We consider the linear Boltzmann equation,

• in $(x, v) \in \mathbb{R}^d \times \mathbb{R}^d$ with $\Phi \in \mathcal{C}^2(\mathbb{R}^d)$:

$$\partial_{t} f + v \cdot \nabla_{x} f - (\nabla_{x} \Phi \cdot \nabla_{v} f) = Q(f, \mathcal{M}), \quad \mathcal{M}(v) := (2\pi)^{-\frac{d}{2}} e^{-\frac{|v|^{2}}{2}},$$

$$Q(f, g) = \int_{\mathbb{R}^{d}} \int_{\mathbb{S}^{d-1}} B(|v - v_{*}|, \sigma) (f(v')g(v'_{*}) - f(v)g(v_{*})) d\sigma dv_{*},$$

$$v' = \frac{v + v_{*}}{2} + \frac{|v - v_{*}|}{2} \sigma, \quad v'_{*} = \frac{v + v_{*}}{2} - \frac{|v - v_{*}|}{2} \sigma, \quad (10)$$

• in $(x, v) \in \mathbb{T}^d \times \mathbb{R}^d$ with periodic B.C.:

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f, \mathcal{M}),$$
 (11)

- *Q* is the *Boltzmann operator*
- B is the collision kernel, assumed to be hard and s.t.

$$B(|v-v_*|,\sigma) = |v-v_*|^{\gamma} b\left(\sigma \cdot \frac{v-v_*}{|v-v_*|}\right), \quad (12)$$

for some $\gamma \geq 0$.

• b integrable in σ , uniformly positive on [-1,1]; i.e. there exists $C_b > 0$ s.t.

$$b(z) \ge C_b \text{ for all } z \in [-1, 1] \tag{13}$$

- B. Lods, C. Mouhot, G. Toscani 2008; M. Bisi, J.A. Cañizo,
 B. Lods 2015; J.A. Cañizo, A. Einav, B. Lods 2017: Spatially homogeneous case
- C. Mouhot, L. Neuman 2006; J. Dolbeault, C. Mouhot, C. Schmeiser 2015: Convergence exponentially fast in both H¹ and L² using hypocoercivity techniques.

Theorem (Cañizo, Cao, Evans & Y. '19): on the torus

Suppose that $t \mapsto f_t$ is the solution to either linear BGK or linear Boltzmann equation on the torus with initial data $f_0 \in \mathcal{P}(\mathbb{T}^d \times \mathbb{R}^d)$.

In the case of linear Boltzmann equation we also assume (12) with $\gamma \geq 0$, and (13). Then there exist constants C>0, $\lambda>0$ (independent of f_0) such that

$$||f_t - \mu||_* \le Ce^{-\lambda t} ||f_0 - \mu||_*,$$
 (14)

where μ is the only equilibrium state of the corresponding equation in $\mathcal{P}(\mathbb{T}^d \times \mathbb{R}^d)$ (that is, $\mu(x, v) = \mathcal{M}(v)$). The norm is the total variation norm $\|\cdot\|_{\mathrm{TV}}$,

$$\|f_0 - \mu\|_* = \|f_0 - \mu\|_{\mathrm{TV}} := \int_{\mathbb{D}^d} \int_{\mathbb{T}^d} |f_0 - \mu| \mathrm{d}x \mathrm{d}v \text{ for equation (9)},$$

and it is a weigthed total variation norm,

$$\|f_0 - \mu\|_* = \int_{\mathbb{T}^d} \int_{\mathbb{T}^d} (1 + |v|^2) |f_0 - \mu| \mathrm{d}x \mathrm{d}v$$
 for equation (11).

Idea of the proof:

- $t \mapsto T_t f_0$ solves the equation $\partial_t f + v \cdot \nabla_x f = 0$ with initial condition f_0 .
- In this case: $T_t f_0(x, v) = f_0(x tv, v)$.
- By Duhamel's formula

$$e^t f_t \ge \int_0^t \int_0^s T_{t-s} \mathcal{L}^+ T_{s-r} \mathcal{L}^+ T_r f_0 dr ds.$$

Bound on the 'jump' operator:
 Lemma L: For all δ_L > 0 there exists α_L > 0 s.t. for all nonnegative functions g ∈ L¹(T^d × R^d) we have

$$\mathcal{L}^+ g(x, v) \ge \alpha_L \left(\int_{\mathbb{R}^d} g(x, u) du \right) 1_{\{|v| \le \delta_L\}},$$

and for almost all $(x, v) \in \mathbb{T}^d \times \mathbb{R}^d$.

Idea of the proof:

• Bound on the 'transport' part: **Lemma T:** Given any time $t_0 > 0$ and radius R > 0 there exists $\delta_L, R' > 0$ s.t. for all $t \ge t_0$ it holds that

$$\int_{B(R')} T_t \left(\delta_{x_0} 1_{\{|v| \le \delta_L\}} \right) dv \ge \frac{1}{t^d} 1_{\{|x| \le R\}},$$

for all x_0 with $|x_0| < R$.

• For the linear Boltzmann: suppose $\gamma \geq 0$ st.

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \mathcal{L}^+ f - \sigma(\mathbf{v}) f$$

where $\sigma(v) \geq 0$ and $\sigma(v)$ behaves like $|v|^{\gamma}$ for large v, i.e.

$$0 \le \sigma(v) \le (1+|v|^2)^{\gamma/2} \text{ for } v \in \mathbb{R}^d.$$

Theorem (Cañizo, Cao, Evans & Y. 19'): on \mathbb{R}^d

Suppose that $t\mapsto f_t$ is the solution to either linear BGK or linear Boltzmann equation in the whole space with initial data $f_0\in\mathcal{P}(\mathbb{R}^d\times\mathbb{R}^d)$ and with a confining potential $\Phi\in\mathcal{C}^2(\mathbb{R}^d)$ bounded below s.t. for some positive constants γ_1,γ_2,A :

$$x \cdot \nabla_x \Phi(x) \ge \gamma_1 |x|^2 + \gamma_2 \Phi(x) - A, \qquad x \in \mathbb{R}^d.$$

In the case of linear Boltzmann equation we also assume (12), (13) and for some positive constants γ_1, γ_2, A :

$$x \cdot \nabla_x \Phi(x) \ge \gamma_1 \langle x \rangle^{\gamma+2} + \gamma_2 \Phi(x) - A, \qquad x \in \mathbb{R}^d.$$

Theorem (Cañizo, Cao, Evans & Y. '19): on \mathbb{R}^d

Then there exist constants $C>0, \lambda>0$ (independent of f_0) such that

$$||f_t - \mu||_* \le Ce^{-\lambda t} ||f_0 - \mu||_*$$
 (15)

where μ is the only equilibrium state of the corresponding equation in $\mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d)$,

$$\mathrm{d}\mu = \mathcal{M}(v)e^{-\Phi(x)}\mathrm{d}v\mathrm{d}x.$$

The norm $\|\cdot\|_*$ is a weighted total variation norm defined by

$$||f_t - \mu||_* := \int \left(1 + \frac{1}{2}|v|^2 + \Phi(x) + |x|^2\right) |f_t - \mu| dv dx.$$

Idea of the proof:

- linear relaxation Boltzmann case:
 - Minorisation condition: instantaneously producing large velocities under the action of ϕ .
 - Lyapunov condition is satisfied for:

$$V(x,v) = 1 + \Phi(x) + \frac{1}{2}|v|^2 + \frac{1}{4}x \cdot v + \frac{1}{8}|x|^2$$

under the given assumptions on Φ .

- linear Boltzmann case:
 - Similar arguments for minorisation condition
 - Lyapunov condition: only Maxwell molecules case ($\gamma=0$) with the same functional above.

Theorem (Cañizo, Cao, Evans & Y. '19): subgeometric

Suppose that $t\mapsto f_t$ is the solution to the linear BGK equation in \mathbb{R}^d with a confining potential $\Phi\in\mathcal{C}^2(\mathbb{R}^d)$. Assume that for some β in (0,1), Φ satisfies for some positive constants γ_1,γ_2,A :

$$x \cdot \nabla_x \Phi(x) \ge \gamma_1 \langle x \rangle^{2\beta} + \gamma_2 \Phi(x) - A,$$

Then we have that there exists a constant C > 0 such that

$$||f_t - \mu||_{\text{TV}} \le \min \left\{ ||f_0 - \mu||, \right.$$

$$C \int f_0(x, v) \left(1 + \frac{1}{2} |v|^2 + \Phi(x) + |x|^2 \right) (1 + t)^{-\beta/(1-\beta)} \right\}. \quad (16)$$

Theorem (Cañizo, Cao, Evans & Y. '19): subgeometric

Suppose that $t\mapsto f_t$ is the solution to the linear Boltzmann equation in \mathbb{R}^d , satisfies (12), (13) and for some positive constants $\gamma_1, \gamma_2, A, \beta, \gamma_3$:

$$x \cdot \nabla_x \Phi(x) \ge \gamma_1 \langle x \rangle^{\beta+1} + \gamma_2 \Phi(x) - A, \quad \Phi(x) \le \gamma_3 \langle x \rangle^{1+\beta},$$

Then we have that there exists a constant C > 0 such that

$$\|f_t - \mu\|_{\text{TV}} \le \min \left\{ \|f_0 - \mu\|, \\ C \int f_0(x, v) \left(1 + \frac{1}{2} |v|^2 + \Phi(x) + |x| \right) (1 + t)^{-\beta} \right\}.$$

D. Bakry, P. Cattiaux, A. Guillin 2008; R. Douc, G. Fort, A. Guillin 2009: C. Cao 2018: Subgeometric convergence for kinetic Fokker-Planck equations with weak confinement

Remarks:

We obtain via Harris's Theorem

- exponential convergence rates
 - on the d-dimesional torus
 - in the whole space with a confining potentials growing at least quadratically at ∞ .
- algebraic convergence rates for subquadratic potentials
 - this is the only work showing this type of convergence in a quantitative way for the equations we present.
- in TV norms or weighted TV norms, (alternatively L^1 or weighted L^1 norms)
- for much wider range of initial conditions,
 - for initial conditions with slow decaying tails,
 - for measure initial conditions with very bad local regularity.
- existence of stationary solutions under quite general conditions

Asymptotic behaviour of neuron population models structured by elapsed-time joint work with José A. Cañizo (U. Granada)

- P. Gabriel 2017: Exponential convergence to equilibrium for the conservative renewal equation
- G. Dumont, P. Gabriel 2017: Exponential convergence to equilibrium for leaky integrate-and-fire neuron model
- V. Bansaye, B. Cloez, P.Gabriel 2017: <u>Quantitative</u> estimates for some non-conservative and non-homogeneous positive semigroups, new bounds on the homogeneous setting
- V. Bansaye, B. Cloez, P.Gabriel, A. Marguet 2019: Non-conservative semigroups, quantitative estimates based on a non-homogenous h-transform of the semigroup and the construction of Lyapunov functions.

1. Age-structured neuron population model

$$\frac{\partial}{\partial t}n(t,s) + \frac{\partial}{\partial s}n(t,s) + p(N(t),s)n(t,s) = 0, \quad t,s \ge 0,$$

$$N(t) := n(t,0) = \int_0^{+\infty} p(N(t),s)n(t,s)ds, \quad t > 0,$$

$$n(0,s) = n_0(s) \ge 0, \quad s > 0.$$

$$(17)$$

- n(t, s): a population density function giving the probability of finding a neuron in state s at time t.
- *s: time elapsed since the last discharge.
- p(N, s): firing rate of neurons in the the state s, in an environment N resulting from the global neural activity.
- N(t): density of neurons having a discharge at time t.

1. Age-structured neuron population model

Proposed in Pakdaman, Perthame & Salort 2010:

$$\frac{\partial}{\partial t}n(t,s) + \frac{\partial}{\partial s}n(t,s) + p(X(t),s)n(t,s) = 0, \quad t,s \ge 0,$$

$$N(t) := n(t,0) = \int_0^{+\infty} p(X(t),s)n(t,s)ds, \quad t > 0,$$

$$n(0,s) = n_0(s) \ge 0, \quad s > 0.$$

where

$$X(t) = \int_0^u \alpha(u) N(t-u) du.$$

1. Age-structured neuron population model

2. Neuron population model with fatigue

Proposed in Pakdaman, Perthame & Salort 2014:

$$\frac{\partial}{\partial t} n(t,s) + \frac{\partial}{\partial s} n(t,s) + p(N(t),s)n(t,s)$$

$$= \int_{0}^{+\infty} \kappa(s,u)p(N(t),u)n(t,u)du, \quad t,s \ge 0,$$

$$n(t,s=0) = 0, \quad N(t) = \int_{0}^{+\infty} p(N(t),s)n(t,s)ds,$$

$$n(t=0,s) = n_{0}(s) \ge 0, \quad s > 0.$$
(18)

where n(t,s), p(N,s) and N(t) same as before and $\kappa(s,u) \in \mathcal{M}(\mathbb{R}^+ \times \mathbb{R}^+)$: distribution of neurons which take the state s when a discharge occurs after an elapsed time u since their last discharge.

 $\kappa(s, u) = \delta_0(s)$ recovers the first model.

Properties

- mass conservative: $\frac{d}{dt} \int_0^{+\infty} n(t,s) ds = 0$.
- positivity preserving.
- $n_0(s) \in \mathcal{P}, \ \int_0^{+\infty} n_0(s) ds = 1.$
- larger the stimulation neurons induce smaller the refractory period.

i.e. excitatory network: $\frac{\partial}{\partial N}p(N,s) > 0$.

• $\kappa(s, u) = \delta_0(s)$ in (18) we recover the first model.

Assumptions

We make the following assumptions for models (17) and (18)(last one is only for (18));

- $p \in W^{1,\infty}([0,+\infty) \times [0,+\infty))$, s.t. $p(N,s) \ge 0 \quad \forall N,s \ge 0$, with L being the smallest number s.t. $|p(N_1,s)-p(N_2,s)| \le L|N_1-N_2|$ for $N_1,N_2 \ge 0$ and s > 0.
- 3 $\frac{\partial}{\partial s}p(N,s) > 0$, for all $N, s \ge 0$.
- For each $u \geq 0$, $\kappa(\cdot, u) \in \mathcal{P}(\mathbb{R}^+)$ supported on [0, u] and $\exists \epsilon > 0, 0 < \delta < s_*$ s.t. $\kappa(\cdot, u) \geq \epsilon \mathbb{1}_{[0,\delta]}$ for all $u \geq s_*$, $\int_0^u \kappa(s, u) ds = 1$.

Theorem (Cañizo & Y. '18)

Suppose that (1)–(3) are satisfied for equation (17), or (1)–(4) for equation (18). Suppose also that L is small enough depending on p and κ . Let n_0 be a probability measure on $[0,+\infty)$. Then, there exists a unique probability measure n_* which is a stationary solution to (17) or (18), and there exist constants $C \ge 1$, $\lambda > 0$ depending only on p and κ such that the (mild or weak) measure solution n = n(t) to (17)-(18) satisfies

$$||n(t) - n_*||_{\text{TV}} \le Ce^{-\lambda t} ||n_0 - n_*||_{\text{TV}}, \text{ for all } t \ge 0.$$
 (19)

Remark:

Constants are constructive. To be precise one can take

$$\lambda = \lambda_1 - \tilde{C}, \quad C = C_1 \text{ for (17)},$$

 $\lambda = \lambda_2 - \tilde{C}, \quad C = C_2 \text{ for (18)},$

with $\beta = p_{\min} e^{-2p_{\max} s_*}$ and $\tilde{C} = 2p_{\max} \frac{L}{1-L},$ where

$$egin{align} \mathcal{C}_1 := rac{1}{1-s_*eta}, & \lambda_1 = -rac{\log(1-s_*eta)}{2s_*} \ \mathcal{C}_2 := rac{1}{1-\epsilon\delta(s_*-\delta)eta}, & \lambda_2 = -rac{\log(1-\epsilon\delta(s_*-\delta)eta)}{2s_*} \ \end{align}$$

Remark:

Smallness condition on L can be written as

$$L < \min\bigg\{\frac{p_{\mathsf{min}}^2}{p_{\mathsf{max}}^2 \left(s_* p_{\mathsf{min}} (s_* p_{\mathsf{min}} + 2) + 2\right)}, \frac{\log(1 - s_* \beta)}{\log(1 - s_* \beta) - 4 p_{\mathsf{max}} s_*}\bigg\},$$

for (17) or

$$L < \min \left\{ \frac{p_{\mathsf{min}} \epsilon \delta(s_* - \delta) \beta}{p_{\mathsf{min}} \epsilon \delta(s_* - \delta) \beta + p_{\mathsf{max}} e^{4p_{\mathsf{max}} s_*}}, \\ \frac{\log(1 - \epsilon \delta(s_* - \delta))}{\log(1 - \epsilon \delta(s_* - \delta)) - 4p_{\mathsf{max}} s_*} \right\},$$

for (18).

Idea of the proof:

- Positive lower bound for solutions of the linear equation
- 2 Positive lower bound $1 \implies Doeblin condition satisfied$
- \odot Doeblin condition \Longrightarrow spectral gap
- Pertubation argument applied to the linear equation ⇒ exponential relaxation to the stationary solution

Define two operators;

$$\mathcal{L}_{N(t)}n := \partial_t n = -\partial_s n - p(N(t), s)n + \int \kappa(s, u)p(N(t), u)ndu.$$

$$\mathcal{L}_{N_*}n := -\partial_s n - p(N_*, s)n + \int \kappa(s, u)p(N_*, u)ndu.$$

Define two operators;

$$\mathcal{L}_{N(t)}n := \partial_t n = -\partial_s n - p(N(t), s)n + \int \kappa(s, u)p(N(t), u)ndu.$$

$$\mathcal{L}_{N_*}n := -\partial_s n - p(N_*, s)n + \int \kappa(s, u)p(N_*, u)ndu.$$

$$\bullet \ \partial_t n(t,s) = \mathcal{L}_{N(t)} n(t,s) = \mathcal{L}_{N_*} n(t,s) - \underbrace{(\mathcal{L}_{N_*} - \mathcal{L}_{N(t)}) n(t,s)}_{:=h(t,s)}.$$

Define two operators;

$$\mathcal{L}_{N(t)}n := \partial_t n = -\partial_s n - p(N(t), s)n + \int \kappa(s, u)p(N(t), u)ndu.$$

$$\mathcal{L}_{N_*}n := -\partial_s n - p(N_*, s)n + \int \kappa(s, u)p(N_*, u)ndu.$$

•
$$n(t,s) = S_t n_0(s) + \int_0^t S_{t-\tau} h(\tau,s) d\tau$$

$$\bullet \ \partial_t n(t,s) = \mathcal{L}_{N(t)} n(t,s) = \mathcal{L}_{N_*} n(t,s) - \underbrace{(\mathcal{L}_{N_*} - \mathcal{L}_{N(t)}) n(t,s)}_{:=h(t,s)} .$$

•
$$n(t,s)-n_* = S_t n_0(s)-n_* + \int_0^t S_{t-\tau} h(\tau,s) d\tau$$

Structured population dynamics

•
$$n(t,s)-n_* = S_t n_0(s)-n_* + \int_0^t S_{t-\tau} h(\tau,s) d\tau$$

•
$$||n(t)-n_*||_{\text{TV}} \le ||S_t n_0 - n_*||_{\text{TV}} + ||\int_0^t S_{t-\tau} h(\tau, s) d\tau||_{\text{TV}}.$$

- $n(t,s)-n_* = S_t n_0(s)-n_* + \int_0^t S_{t-\tau} h(\tau,s) d\tau$
- $\|n(t) n_*\|_{\text{TV}} \le \|S_t n_0 n_*\|_{\text{TV}} + \|\int_0^t S_{t-\tau} h(\tau, s) d\tau\|_{\text{TV}}.$
- "h" lemma: $\|h(t)\|_{\mathrm{TV}} \leq \tilde{C} \|n(t) n_*\|_{\mathrm{TV}}$ where \tilde{C} calculated explicitly.

- $n(t,s)-n_* = S_t n_0(s)-n_* + \int_0^t S_{t-\tau} h(\tau,s) d\tau$
- $||n(t) n_*||_{\text{TV}} \le ||S_t n_0 n_*||_{\text{TV}} + ||\int_0^t S_{t-\tau} h(\tau, s) d\tau||_{\text{TV}}.$
- "h" lemma: $\|h(t)\|_{\mathrm{TV}} \leq \tilde{C} \|n(t) n_*\|_{\mathrm{TV}}$ where \tilde{C} calculated explicitly.
- Result by Grönwall's argument: $\|n(t) n_*\|_{\mathrm{TV}} \leq C e^{-(\lambda \tilde{C})t} \|n_0 n_*\|_{\mathrm{TV}}.$

Proof of the "h" lemma:

$$\begin{split} \|h(t)\|_{\mathrm{TV}} &= \|(\mathcal{L}_{N_*} - \mathcal{L}_{N(t)}) n(t,s)\|_{\mathrm{TV}} \\ &\leq \|(p(N(t),s) - p(N_*,s)) n(t,s)\|_{\mathrm{TV}} + \\ \|\int_0^{+\infty} \kappa(s,u) (p(N_*,u) - p(N(t),u)) n(t,u) \mathrm{d}u\|_{TV} \\ &\leq L \|n(t)\|_{\mathrm{TV}} |N_* - N(t)| + L \|n(t)\|_{\mathrm{TV}} |N_* - N(t)| \\ &\leq 2 p_{\max} \frac{L \|n(t)\|_{\mathrm{TV}}}{1 - L \|n(t)\|_{\mathrm{TV}}} \|n(t) - n_*\|_{\mathrm{TV}} \\ &= \underbrace{\frac{2 p_{\max} L}{1 - L}}_{\tilde{\mathcal{L}}} \|n(t) - n_*\|_{\mathrm{TV}} \end{split}$$

Relaxation to equilibrium for the growth-fragmentation equation by Harris's Theorem

joint work with **José A. Cañizo** (U. Granada) and **Pierre Gabriel** (U. Versailles)

The growth-fragmentation equation

$$\frac{\partial}{\partial t} n(t, x) + \frac{\partial}{\partial x} (g(x)n(t, x))$$

$$= \int_{x}^{\infty} \kappa(y, x)n(t, y)dy - B(x)n(t, x), \quad t, x \ge 0,$$

coupled with n(t,0) = 0, t > 0 and $n(0,x) = n_0(x), x > 0$.

- cell division, polymerisation, neurosciences, prion proliferation, telecommunication (TCP, IP), ecology...
- unicellular organisms: age ??, elapsed-time ??, mass of the cell ✓, length of the cell ✓, DNA content ✓, level of certain proteins ✓
- $B(x) = 1 \implies$ mass is conserved.

The growth-fragmentation equation

- n(t,x): the population density of individuals structured by a variable x > 0 at a time t > 0.
- $g(0,+\infty) \to (0,+\infty)$ is the growth rate.
- B: total division/fragmentation rate of individuals with size $x \ge 0$. $\to B(x) = \int_0^y \frac{y}{x} \kappa(x, y) dy$.
- $\kappa(y,x)$: the rate at which individuals of size x are obtained as the result of a fragmentation event of an individual of size y.
 - equal mitosis: $\kappa(x,y) = B(x) \frac{2}{x} \delta_{\{y=\frac{x}{2}\}}$.

$$\partial_t n(t,x) + \partial_x (g(x)n(t,x) + B(x)n(t,x)) = 4B(2x)n(t,2x).$$

2 uniform fragmentation: $\kappa(x,y) = B(x)\frac{2}{x}$

Perron eigenvalue problem:

Finding suitable eigenelements $(\lambda, N(x), \phi(x))$ which satisfy:

$$\frac{\partial}{\partial x} (g(x)N(x)) + (B(x) + \lambda)N(x) = \int_{x}^{+\infty} \kappa(x,y)N(y)dy,$$

$$g(0)N(0) = 0, \quad N(x) \ge 0, \quad \int_{0}^{+\infty} N(x)dx = 1.$$

$$-g(x)\frac{\partial}{\partial x}\phi(x) + (B(x) + \lambda)\phi(x) = \int_{0}^{x} \kappa(y,x)\phi(y)dy,$$

$$\phi(x) \ge 0, \quad \int_{0}^{+\infty} \phi(x)N(x)dx = 1.$$
(21)

Scaled equation

• scaling $\rightsquigarrow m(t,x) := n(t,x)e^{-\lambda t}$:

$$\frac{\partial}{\partial t}m(t,x) + \frac{\partial}{\partial x}(g(x)m(t,x))$$

$$= \int_{x}^{\infty} \kappa(y,x)m(t,y)dy - (B(x)+\lambda)m(t,x), \quad t,x \ge 0,$$

$$m(t,0) = 0, \quad t > 0, \quad m(0,x) = n_0(x), \quad x > 0. \quad (22)$$

• conserved quantity: $\frac{d}{dt} \int \phi(x) m(t, x) dx = 0$.

Assumptions

- $g(0, +\infty) \to (0, +\infty)$ is a locally Lipschitz. There exists C > 0 such that $g(x) \le Cx$ for all $x \ge 1$. $\int_0^1 \frac{1}{g(x)} dx < +\infty.$
- $B(0,+\infty) \to (0,+\infty)$ s.t. $B(x) \xrightarrow[x \to +\infty]{} +\infty$.
- Example: $g(x) = x^{\alpha}$ where $\alpha \in [0,1]$ and $B(x) = x^{\gamma}$, where $\gamma > 0$.
- When g(x) = x: $B(x) \xrightarrow[x \to 0]{} 0$
- [E. Bernard, M. Doumic & P. Gabriel 2019] mitosis with $g(x) = x \rightsquigarrow \lambda_k = 1 + \frac{2ik\pi}{\log 2}, k \in \mathbb{Z}$

Thank you!