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Qualitative behaviour of kinetic equations and related problems
HIM, Bonn, 7th June 2019

Results in collaboration with H. Hutridurga and O. Mula

F. Salvarani (Pavia & Paris-Dauphine) Homogenization for LBE Bonn, 07/06/2019 1 / 48



Introduction

Table of contents

1 Introduction
The linear Boltzmann equation in energy
Self-shielding

2 Homogenization of an ODE
Luc Tartar’s example
Numerical visualization
A new approach to Tartar’s example

3 Homogenization of the linear Boltzmann equation
A priori bounds
The homogenization result
Numerical simulations

F. Salvarani (Pavia & Paris-Dauphine) Homogenization for LBE Bonn, 07/06/2019 2 / 48



Introduction The linear Boltzmann equation in energy

Table of contents

1 Introduction
The linear Boltzmann equation in energy
Self-shielding

2 Homogenization of an ODE
Luc Tartar’s example
Numerical visualization
A new approach to Tartar’s example

3 Homogenization of the linear Boltzmann equation
A priori bounds
The homogenization result
Numerical simulations

F. Salvarani (Pavia & Paris-Dauphine) Homogenization for LBE Bonn, 07/06/2019 3 / 48



Introduction The linear Boltzmann equation in energy

The linear Boltzmann equation

Describes the behavior of a neutron gas interacting with a host medium
(typically, the core of a nuclear reactor)

Ω: bounded domain of Rd with C1 boundary
V : velocity space
f = f (t, x , v): population density of neutrons

∂t f + v · ∇x f + σ(x , v)f −
∫
V
κ(x , v · v ′)f (t, x , v ′)dv ′ = 0

Optical parameters:

σ ≥ 0: total cross-section of the background material
κ ≥ 0: scattering kernel
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Introduction The linear Boltzmann equation in energy

The energy description
ω = v/|v |: trajectory angle of the neutron

E = m|v |2/2: kinetic energy of the neutron (m: neutron mass)

New unknown: neutron flux (v expressed via the pair (ω,E ))
ϕ(t, x , ω,E ) = ϕ(t, x , v) := |v |f (t, x , v) E ∈ [Emin,Emax]

The linear Boltzmann equation

√
m

2E
∂tϕ+ ω · ∇xϕ+ σ (x , ω,E )ϕ

−
∫ Emax

Emin

∫
|ω′|=1

κ
(
x , ω · ω′,E ,E ′

)
ϕ(x , ω′,E ′)dω′ dE ′ = 0

ϕ(0, x , ω,E ) = ϕin(x , ω,E )

ϕ = 0 ∀t,E > 0 and for (x , ω) ∈ Γ− =
{

(x , ω) ∈ ∂Ω× Sd−1 : nx · ω < 0
}

Initial and boundary conditions

sf
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Introduction Self-shielding

Self-shielding
In some cases the amount of absorption reactions is dramatically modified
by the heterogeneity of the host medium

Radiative capture cross sections of 238U and 240Pu
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Introduction Self-shielding

Two types of self-shielding

spatial self-shielding

energy self-shielding

Spatial self-shielding

Basic fuel element of light water reactors: fuel rod which contains fuel
pellets made of uranium dioxide.

A standard reactor core may contain some 15 million fuel pellets. The
neutron moderator surrounds these fuel rods. The spatial self-shielding is
phenomenon primarily connected with this heterogeneity of the reactor
core.

Dumas, L. and Golse, F. Homogenization of Transport Equations. SIAM J
Appl Math, 60(4), pp. 1447-1470, 2000
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Introduction Self-shielding

Energy self-shielding

Energy self-shielding is related to the high oscillation of the optical
parameters with respect to the energy of the incoming flux.

Physicists noticed that the simple average of the optical parameters in the
linear Boltzmann equation does not allow to obtain accurate results
(reduction of the expected energy dependent neutron flux)

Practical strategy: introduce a correction on the averages of the optical
parameters in the linear Boltzmann equation

H. Hutridurga, O. Mula, F. Salvarani. Homogenization in the energy
variable for a neutron transport problem. Asymptotic analysis, in press
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Homogenization of an ODE Luc Tartar’s example

L. Tartar’s example (1979)

For the unknown uε, consider the differential equation

∂tu
ε + σ

(x
ε

)
uε = 0; uε(0, x) = uin(x).

Notation for the Laplace transform (in the time variable) of a function:

f̂ (p) :=

∫ ∞
0

e−ps f (s) ds for p > 0.

Notation: let Y := (0, 1)d be the unit cube in Rd ; for any v ∈ L1(Y)

〈v〉 =

∫
Y
v(y) dy

denotes the average of v in Y.
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Homogenization of an ODE Luc Tartar’s example

Homogenization of Tartar’s example

Theorem (Tartar)

Let the coefficient σ(·) be a strictly positive, bounded and purely periodic
coefficient of period Y. Then the L∞ weak ∗ limit uhom(t, x) of the
solution family uε satisfies the following integro-differential equation ∂tuhom(t, x) + 〈σ〉uhom(t, x)−

∫ t

0
M(t − s)uhom(s, x) ds = 0

uhom(0, x) = uin(x)

where the memory kernel M(τ) is given in terms of its Laplace transform

M̂(p) = p + 〈σ〉 − B(p) =

∫
Y

(
p + σ(y)− B(p)

)
dy ∀p > 0,

with the constant B(p) taking the value B(p) :=

(∫
Y

dy

p + σ(y)

)−1

.
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Homogenization of an ODE Numerical visualization

(J. Mathiaud & FS)
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Solution of the non-homogenized problem (blue line) and of the exact
homogenized problem (red line) at time t = 0.4

Initial condition: uin(x) = sin(x)/(1 + x2)

Absorption coefficient: σ = cos(2π/ε)/4 + 1 ε = 10−1
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Homogenization of an ODE Numerical visualization

Comparison at time t = 0.4
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Solution of the exact homogenized problem (blue line) and solution of the
problem obtained by averaging the absorption coefficient (red dotted line)

Initial condition: uin(x) = sin(x)/(1 + x2)

Absorption coefficient: σ = cos(2π/ε)/4 + 1 ε = 10−1
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Homogenization of an ODE A new approach to Tartar’s example

Tartar’s example revisited{
∂tu

ε(t, x) + σε(x)uε(t, x) = f ε(t, x) (t, x) ∈ (0,T )× Ω

uε(0, x) = uεin (x) x ∈ Ω

σε(x) := σ
(
x ,

x

ε

)
, f ε(t, x) := f

(
t, x ,

x

ε

)
, uεin(x) := uin

(
x ,

x

ε

)
,

σ(x , y) ∈ L∞(Ω;Cper(Y))

f (t, x , y) ∈ L∞((0,T )× Ω;Cper(Y)), uin(x , y) ∈ L2(Ω;Cper(Y))

Notation: Cper(Y) denote Y-periodic continuous functions on Rd

Hypothesis: there exists a positive constant σmin such that

σ(x , y) ≥ σmin ∀ (x , y) ∈ Ω×Y
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Homogenization of an ODE A new approach to Tartar’s example

Two-scale convergence

The notion of two-scale convergence is a weak-type convergence as it is
given in terms of test functions

Definition

A family of functions v ε(x) ⊂ L2(Ω) two-scale converges to a limit
v0(x , y) ∈ L2(Ω×Y) if, for any smooth test function ψ(x , y), Y-periodic
in the y variable,

lim
ε→0

∫
Ω
v ε(x)ψ

(
x ,

x

ε

)
dx =

∫
Ω

∫
Y
v0(x , y)ψ(x , y)dx dy .
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Homogenization of an ODE A new approach to Tartar’s example

Two-scale convergence: two results

Theorem (Nguetseng, Allaire)

Suppose a family v ε(x) ⊂ L2(Ω) is uniformly bounded, i.e.,

‖v ε‖L2(Ω) ≤ C

with constant C being independent of ε. Then, we can extract a
sub-sequence (still denoted v ε) such that v ε two-scale converges to some
limit v0(x , y) ∈ L2(Ω× Y ).

Proposition (Nguetseng, Allaire)

Let v ε be a sequence of functions in L2(Ω) which two-scale converges to a
limit v0 ∈ L2(Ω×Y). Then v ε(x) converges to 〈v〉(x) =

∫
Y v0(x , y) dy

weakly in L2(Ω), i.e.,

lim
ε→0

∫
Ω
v ε(x)ϕ(x) dx =

∫
Ω
ϕ(x)

∫
Y
v0(x , y) dy dx for all ϕ ∈ L2(Ω).
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Homogenization of an ODE A new approach to Tartar’s example

Properties of the ODE
For any given g ∈ L∞(Y ), the linear operator

Lg v := gv − 〈gv〉 ∀v ∈ L2
per(Y)

is bounded in L2
per(Y) as

‖Lgh‖2
L2
per(Y) =

∫
Y
|g(y)h(y)− 〈gh〉|2 dy =

∫
Y
|g(y)h(y)|2 dy − 〈gh〉2

By Cauchy-Schwarz:

|〈gh〉| =

∣∣∣∣∫
Y
g(y)h(y) dy

∣∣∣∣ ≤ (∫
Y
|g(y)h(y)|2 dy

) 1
2

.

As a consequence, Lg : L2
per(Y) 7→ L2

per(Y) is the infinitesimal generator
of a uniformly continuous semigroup given by

etLg =
∞∑
n=0

tn

n!
Lng .
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Homogenization of an ODE A new approach to Tartar’s example

Theorem (H. Hutridurga, O. Mula, FS)

uε ⇀ uhom weakly in L2((0,T )× Ω) ∂tuhom(t, x) + 〈σ〉(x)uhom(t, x)−
∫ t

0
K(t − s, x)uhom(s, x)ds = S(t, x)

uhom(0, x) = 〈uin〉(x)

The memory kernel is given by

K(τ, x) =

∫
Y
σ(x , y)e−τLσL1σ(x , y) dy

The source term is given by

S(t, x) = 〈f 〉(t, x)−
∫ t

0

∫
Y
σ(x , y)e−(t−s)LσL1f (s, x , y)dy ds

−
∫
Y
σ(x , y)e−tLσL1uin(x , y)dy .

F. Salvarani (Pavia & Paris-Dauphine) Homogenization for LBE Bonn, 07/06/2019 22 / 48



Homogenization of an ODE A new approach to Tartar’s example

Explicit solution:

uε(t, x) = uin
(
x ,

x

ε

)
e−σ

ε(x)t +

∫ t

0
e−σ

ε(x)(t−s)f
(
s, x ,

x

ε

)
ds.

The regularity properties of the initial condition uin and of the source term
f , together with the fact that σε ≥ 0, imply that, uniformly in ε

‖uε‖L∞((0,T );L2(Ω)) ≤ C <∞

Nguetseng & Allaire’s theorem guarantees the existence of a subsequence
uε which two-scale converges to a function u0 ∈ L2((0,T )× Ω×Y)
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Homogenization of an ODE A new approach to Tartar’s example

Equation satisfied by the limit u0

Passing to the limit as ε→ 0 in the sense of two-scale, we obtain

u0(t, x , y) = uin(x , y)e−σ(x ,y)t +

∫ t

0
e−σ(x ,y)(t−s)f (s, x , y) ds

i.e., u0 solves

 ∂tu
0(t, x , y) + σ(x , y)u0(t, x , y) = f (t, x , y) (t, x , y) ∈ (0,T )× Ω×Y

u0(0, x , y) = uin (x , y) (x , y) ∈ Ω×Y
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Homogenization of an ODE A new approach to Tartar’s example

Decomposition
uε converges weakly in L2((0,T )× Ω) to

uhom(t, x) = 〈u0〉(t, x)

and we can then decompose the two-scale limit into a homogeneous part
and a remainder which is of zero mean over the periodic cell:

u0(t, x , y) = uhom(t, x) + r(t, x , y) where 〈r〉 = 0.

We have

∂tuhom + σ(x , y)uhom + ∂tr + σ(x , y)r = f (t, x , y).

Integrating the above equation over the periodicity cell Y yields

∂tuhom + 〈σ〉(x)uhom = 〈f 〉(t, x)− 〈σ(x , ·)r(t, x , ·)〉

as the reminder r is of zero average in the y variable.
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Homogenization of an ODE A new approach to Tartar’s example

The coupled system for uhom(t, x) and r(t, x , y)

Equation for the remainder term:

∂tr + σ(x , y)r −
∫
Y
σ(x , y)r(t, x , y) dy

=
(
〈σ〉(x)− σ(x , y)

)
uhom + f (t, x , y)− 〈f 〉(t, x).

Coupled system for uhom(t, x) and r(t, x , y)
∂tuhom + 〈σ〉(x)uhom = 〈f 〉(t, x)− 〈σ(x , ·)r(t, x , ·)〉

∂tr + Lσr = −uhomL1σ + L1f

uhom(0, x) = 〈uin(x)〉
r(0, x , y) = L1uin.
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Homogenization of an ODE A new approach to Tartar’s example

The decoupled equation for uhom(t, x)
Solve for the remainder term r(t, x , y) in terms of uhom

r(t, x , y) = e−tLσL1uin(x , y) +

∫ t

0
e−(t−s)LσL1f (s, x , y)ds

−
∫ t

0
e−(t−s)LσL1σ(x , y)uhom(s, x) ds

Substitute this expression for the remainder in the evolution for uhom

∂tuhom + 〈σ〉(x)uhom = 〈f 〉(t, x)

+

∫ t

0

∫
Y
σ(x , y)e−(t−s)LσL1σ(x , y)uhom(s, x) dy ds

−
∫ t

0

∫
Y
σ(x , y)e−(t−s)LσL1f (s, x , y)dy ds

−
∫
Y
σ(x , y)e−tLσL1uin(x , y)dy
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Homogenization of an ODE A new approach to Tartar’s example

Extension

Assume that Σε is diagonalizable in the sense that there exists P ∈ Rn×n

invertible and Dε ∈ Rn×n diagonal such that Σε = PDεP−1.
∂tu

ε(t, x) + Σε(x)uε(t, x) = fε(t, x), uε ∈ Rn

uε(0, x) = uin

(
x ,

x

ε

)

Σε(x) = Σ
(
x ,

x

ε

)
=
(

Σi ,j

(
x ,

x

ε

))
1≤i ,j≤n

Σi ,j ∈ L∞(Ω;Cper(Y))

fε(t, x) = f
(
t, x ,

x

ε

)
=
(
fi

(
t, x ,

x

ε

))
1≤i≤n

f εi ∈ L∞((0,T )×Ω;Cper(Y))
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Homogenization of an ODE A new approach to Tartar’s example

Equivalence with Tartar’s formulation

Suppose σ(x , y) = σ(y) (purely periodic absorption term)

The memory kernel K takes the form

K(τ) :=

∫
Y
σ(y)e−τLσ (σ − 〈σ〉) (y)dy

Proposition (H. Hutridurga, O. Mula, FS)

For any p > 0,

K̂(p) = M̂(p) = p + 〈σ〉 − B(p) =

∫
Y

(
p + σ(y)− B(p)

)
dy .
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Homogenization of an ODE A new approach to Tartar’s example

Proof

The Laplace transform for the memory kernel is

K̂(p) =

∫ ∞
0

e−ptK(t) dt =

∫ ∞
0

∫
Y
σ(y)e−pte−tLσ (σ − 〈σ〉) (y)dy dt

The Laplace transform of a semigroup yields the corresponding resolvent:

K̂(p) =

∫
Y
σ(y) [p + Lσ]−1 (σ − 〈σ〉) (y) dy .

Consider now the equation

[p + Lσ] g(y) = f (y), y ∈ Y

for a given p > 0 and a given measurable function f of zero mean.
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Homogenization of an ODE A new approach to Tartar’s example

Averaging the equation in the y variable yields that it is necessary to have
the solution g(y) to be of zero average as well. Hence, for zero average
functions:

[p + Lσ] g(y) = p + σ(y)g(y)−
∫
Y
σ(y)g(y)dy

= p + σ(y)g(y)−
∫
Y

(σ(y) + p) g(y)dy = Lp+σg(y)

A simple inspection reveals that a general solution to Lp+σg(y) = f (y) is
given by

g(y) =
f (y)

p + σ(y)
+

C

p + σ(y)

where C needs to be chosen such that g(y) is of zero average:

C = −B(p)

∫
Y

f (y)

p + σ(y)
dy with B(p) :=

(∫
Y

dy

p + σ(y)

)−1
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Homogenization of an ODE A new approach to Tartar’s example

As a result, by taking f (y) = σ − 〈σ〉:

[p + Lσ]−1 (σ − 〈σ〉) (y) = g(y) =
σ(y)− 〈σ〉

p + σ
− B(p)

p + σ

∫
Y

σ(y)− 〈σ〉
p + σ(y)

dy

Using the above observation, we have:

K̂(p) =

∫
Y
σ(y)

(
σ(y)− 〈σ〉

p + σ
− B(p)

p + σ

∫
Y

σ(y)− 〈σ〉
p + σ(y)

dy

)
dy

=

∫
Y

(σ(y) + p)

(
σ(y)− 〈σ〉

p + σ
− B(p)

p + σ

∫
Y

σ(y)− 〈σ〉
p + σ(y)

dy

)
dy

as g(y) is of zero mean. Some further computations show that

K̂(p) = 〈σ〉 − B(p)

∫
Y

σ(y)

p + σ(y)
dy = p + 〈σ〉 − B(p) = M̂(p),

thus proving the equivalence.
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The rapidly oscillating problem for the linear Boltzmann
equation (0 < ε� 1)√

m

2E
∂tϕ

ε + ω · ∇xϕ
ε + σε (x , ω,E )ϕε

−
∫ Emax

Emin

∫
|ω′|=1

κε
(
x , ω · ω′,E ,E ′

)
ϕε(x , ω′,E ′)dω′ dE ′ = 0

σε(x , ω,E ) = σ

(
x , ω,E ,

E

ε

)
κε(x , ω · ω′,E ,E ′) = κ

(
x , ω · ω′,E ,E ′, E

′

ε

)
σ(x , ω,E , y) and κ (x , ω · ω′,E ,E ′, y ′) are assumed to be periodic in the y
and y ′ variables respectively.

The equation is complemented with zero incoming flux condition on the
boundary and initial condition ϕin ∈ L2(Ω× Sd−1 × (Emin,Emax))
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Further hypotheses on the optical parameters
Let

κ̄ε(x , ω,E ) =

∫ Emax

Emin

∫
Sd−1

κε(x , ω · ω′,E ,E ′) dω′ dE′

κ̃ε(x , ω,E ) =

∫ Emax

Emin

∫
Sd−1

κε(x , ω · ω′,E ′,E ) dω′ dE′.

Assume that there exists α > 0 such that for all ε > 0,

σε(x , ω,E )− κ̄ε(x , ω,E ) ≥ α and σε(x , ω,E )− κ̃ε(x , ω,E ) ≥ α

Hypothesis on the kernel structure

κε exhibits separation in the E and E ′ variables:

κε(x , ω · ω′,E ,E ′) := κ1(x , ω · ω′,E )κ2

(
x , ω · ω′,E ′, E

′

ε

)
with κ2 (x , ω · ω′,E ′, y ′) being periodic in the y ′ variable.

F. Salvarani (Pavia & Paris-Dauphine) Homogenization for LBE Bonn, 07/06/2019 36 / 48



Homogenization of the linear Boltzmann equation A priori bounds

Positivity property of the Boltzmann operator
Here 〈·〉 denotes integral over the interval (0, 1), i.e. averaging over the
periodic cell in the energy variable:

〈v〉 :=

∫ 1

0
v(y) dy for all v ∈ L1(0, 1).

Notation: V = Sd−1 × (Emin,Emax)

Qεf := σε f −
∫
V
κε(x , ω · ω′,E ,E ′)f (x , ω′,E ′) dω′ dE ′, ∀f ∈ L2(Ω× V).

Proposition

If (σε, κε) satisfy the previous assumptions, then for all ε > 0 and all
f ∈ L2(Ω× V),

(Qεf , f )L2(Ω×V) ≥ α‖f ‖
2
L2(Ω×V).
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Proof

From the Cauchy-Schwarz inequality and the definition of κ̄ε and κ̃ε:(∫
V

∫
V
f (x , ω,E )f (x , ω′,E ′)κε(x , ω · ω′,E ,E ′)dω dEdω′ dE′

)2

≤
(∫

V

∫
V
|f (x , ω,E )|2 κε(x , ω · ω′,E ,E ′) dω dEdω′ dE′

)
(∫

V

∫
V

∣∣f (x , ω′,E ′)
∣∣2 κε(x , ω · ω′,E ,E ′)dω dEdω′ dE′

)
=

(∫
V
|f (x , ω,E )|2 κ̄ε(x , ω,E ) dω dE

)(∫
V
|f (x , ω,E )|2 κ̃ε(x , ω,E ) dω dE

)
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Thanks to Young’s inequality and our assumptions:

(Qεf , f )L2(Ω×V) ≥
∫

Ω
dx

∫
V
|f (x , ω,E )|2 σε(x , ω,E )dω dE

−
∫

Ω

(∫
V
|f (x , ω,E )|2 κ̄ε(x , ω,E ) dω dE

)1/2(∫
V
|f (x , ω,E )|2 κ̃ε(x , ω,E )dω dE

)1/2

dx

≥ α‖f ‖2
L2(Ω×V)

Lemma

If (σε, κε) satisfy the previous assumptions, then there exists C > 0 such
that for all ε > 0, the solution ϕε satisfies

‖ϕε‖L∞((0,T );L2(Ω×V)) ≤ C and ‖ϕε‖L2((0,T )×Ω×V) ≤ C .
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The main theorem

Theorem (H. Hutridurga, O. Mula, FS)

Let ϕε = ϕε(t, x , ω,E ) be the solution of the equation

∂tϕ
ε +
√
E ω · ∇xϕ

ε + σε (ω,E )ϕε−∫ Emax

Emin

∫
|ω′|=1

κε
(
ω · ω′,E ,E ′

)
ϕε(ω′,E ′)dω′ dE ′ = 0

ϕε(0, x , ω,E ) = ϕεin (x , ω,E )

ϕε(t, x , ω,E ) = 0 ∀t > 0 and for (x , ω) ∈ Γ−

where the coefficients and the data are of the form . . .
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σε (ω,E ) :=
√
E σ

(
ω,E ,

E

ε

)
with σ ∈ L∞(V;Cper(0, 1))

ϕεin(x , ω,E ) := ϕin

(
x , ω,E ,

E

ε

)
with ϕin ∈ L2(Ω× V;Cper(0, 1))

κε(ω · ω′,E ,E ′) :=
√
E κ1(ω · ω′,E )κ2

(
ω · ω′,E ′, E

′

ε

)
with

κ1 ∈ L∞ ([−1, 1]× [Emin,Emax]) and

κ2 ∈ L∞ ([−1, 1]× [Emin,Emax];Cper(0, 1)) .

Then,
ϕε ⇀ ϕhom weakly in L2((0,T )× Ω× V)

and ϕhom satisfies the partial integro-differential equation . . .
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∂tϕhom +
√
E ω · ∇xϕhom +

√
E 〈σ〉ϕhom

−
∫ Emax

Emin

∫
Sd−1

√
E κ1(ω · ω′,E )

∫ 1

0
κ2(ω · ω′,E ′, y ′)ϕhomdy

′dω′dE ′ =

∫ Emax

Emin

∫
Sd−1

√
E κ1(ω · ω′,E )

∫ 1

0
κ2(ω · ω′,E ′, y ′)×[

e−t
√
E ′LσL1ϕin −

∫ t

0
e−(t−s)

√
E ′Lσ
√
E ′L1σ(ω′,E ′, y ′)ϕhom ds

]
dy ′dω′dE ′

−
√
E

∫ 1

0
σ(ω,E , y)

[
e−t
√
ELσL1ϕin −

∫ t

0
e−(t−s)

√
ELσ
√
EL1σ(ω,E , y)×

ϕhom ds
]
dy ,

with initial condition ϕhom(0, x , ω,E ) = 〈ϕin(x , ω,E , ·)〉 and zero
absorption condition at the in-flux phase-space boundary.
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Concluding remarks on the assumption on the optical
parameters σε and κε

The assumption of separability

κε(ω · ω′,E ,E ′) :=
√
E κ1(ω · ω′,E )κ2

(
ω · ω′,E ′, E

′

ε

)
simplifies the computations in the proof. It also lead to a relatively
simpler homogenized model.

In the above separable structure, we can further allow the factor κ1 to
oscillate in the E -variable. The proof of the main theorem can be
reworked in this case, at the price of arriving at a more complex
two-scale system. The memory structure remains the same but with
additional terms.

It is apparent from the proof of the main theorem that the energy
oscillations in σ, not those in the scattering kernel, resulted in the
memory effects in the homogenized limit.
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Numerical illustration of the homogenization limit
∂tϕ

ε(t,E ) + σ

(
E

ε

)
ϕε(t,E ) =

∫ Emax

Emin

κ

(
E ′

ε

)
ϕε(t,E ′) dE ′

ϕε(0,E ) = ϕin(E )

for (t,E ) ∈ [0, 10]× (Emin,Emax) = (0, 1).

Strategy: family of orthogonal Legendre polynomials in L2(Emin,Emax)
denoted by {`k}k≥0

Define the modes

mε
k(t) = (ϕε(t, ·), `k(·))L2([Emin,Emax]) , k ≥ 0

of the solution for t ∈ [0,T ]. Likewise,

mhom
k (t) := (ϕhom(t, ·), `k(·))L2([Emin,Emax]) , k ≥ 0

are the modes of the homogenized solution ϕhom.
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Numerical simulations for σ(y) = 2 + 1
2 sin(2πy),

κ(y ′) = 1 + 1
2 sin(2πy ′), ϕin(y) = 1 + sin(2πy)
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Convergence rate in ε of the error eεk = maxt∈[0,T ] |mε
k(t)−mhom

k (t)| (left)
and norm difference |‖ϕε‖L2 − ‖ϕ0‖L2 | (right)
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