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Kinetic Markov Chain Monte-Carlo

MCMC principle : given a target probability law 7 e V@) dg on RY,
define a m-ergodic Markov process :

Voo 1 [ el o [ elann). (1)

t——+o0

Kinetic MCMC : consider an auxiliary law v, ;4 = m ® v and define a
p-ergodic kinetic Markov process (X, V)0, so that (1) still holds.

Advantages :

@ Velocity = instantaneous memory ; inertia = less going back =
ballistic rather than diffusive behaviour. Better convergence expected
= better exploration.

@ Exact simulation in some cases.

@ Sometimes physically relevant (ex : molecular dynamics)
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Kinetic samplers
Specifications :
o (X, V) Markov on R? x R?
e 0 X =V

e Equilibrium g e~ V@ dge 31" dy = e~ HE@EV) dgzdy
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Kinetic samplers
Specifications :
o (X, V) Markov on R? x R?
e 0 X =V
e Equilibrium g e~ V@ dge 31" dy = e~ HE@EV) dgzdy

Clasical examples (denoting pi(x, v) the density of particles) :

Op+v-Vep = —VU(x) - Vyp

Op+v-Vep = =VU(x) Vup+ V- (—vp+ Vyp)

Op+v-Vep = =VU(z) - Vyp+ A (M(v) / p(x,w)dw — p)
Rd
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Kinetic samplers
Specifications :
o (X, V) Markov on R? x R?
e 0 X =V
e Equilibrium g e~ V@ dge 31" dy = e~ HE@EV) dgzdy

Clasical examples (denoting pi(x, v) the density of particles) :

Op+v-Vep = —VU(x) - Vyp

Op+v-Vep = —=VU(x) Vyp+ V- (—vp+ Vyp)

Op+v-Vep = =VU(z) - Vyp+ A (M(v) / p(x,w)dw — p)
Rd

Velocity jump processes : V piecewise constant (jump rate + kernel).
Optv- Ve = [ Agwlaly. w,0)ply. w)dydw ~ Mz, 0)p(a,v)
RexR
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Bounce mechanism

@ jump rate A\(z,v) = (v-VU(z)),
e Jump kernel dg(, ., with

v-VU(z)

R(z,v) = v— QW

VU (z).

In other words (X;,Y;) = (z¢ + tvo,vp) up to a random time T with law

P(T > t) = exp (— /Ot (w0 - VU (20 + svo))+>

or equivalently, if £/ is a standard exponential random variable,

t
T ' inf{t>0, E>/ A(XS,Y;)ds}.
0
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Interpretation

Ax,v) = (v-VU(x))+; and since v = 2/,

t
/ ANXs,Ys)ds = U(Xy) —U(Xo)  when climbing up
0

=0 while going down.

Pierre Monmarché velocity jump processes 04/06/2019 6/16



Interpretation

Ax,v) = (v-VU(x))+; and since v = 2/,

t
/ ANXs,Ys)ds = U(Xy) —U(Xo)  when climbing up
0

=0 while going down.

Pierre Monmarché velocity jump processes 04/06/2019 6/16



Interpretation

Ax,v) = (v-VU(x))+; and since v = 2/,

t
/ ANXs,Ys)ds = U(Xy) —U(Xo)  when climbing up
0

=0 while going down.

Pierre Monmarché velocity jump processes 04/06/2019 6/16



Interpretation

Ax,v) = (v-VU(x))+; and since v = 2/,

t
/ ANXs,Ys)ds = U(Xy) —U(Xo)  when climbing up
0

=0 while going down.
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Interpretation
Az,v) = (v-VU(x))4+; and since v = 2/,

t
/ AMXs,Ys)ds = U(Xy) —U(Xo)  when climbing up

0
=0 while going down.

U = cst
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Remarks

@ This Bouncy Particle Sampler is not ergodic in general :

= add velocity refreshment at constant rate

o Exact simulation without discretization through a thinning method =
no bias on the target law.

@ Many variants on the same theme : Zig-zag, randomized bounces, etc.
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Some results

Theorem (Eyring-Kramers formula, M. 2016)
In dimension 1, U = Uy /e, let T = inf{s > 0, Xy =x; | Xo = x0}. Then

8me U(z1)=U(zq)
E [T] >0 U”(:L‘o) c :
P(r > tE[7]) " et
e—

Theorem (Durmus, Guillin, M. 2018)

In any dimension, with refreshment, under some conditions on U (ex :
U(z) ~ |z|*, a > 1),

loe — pllzv < Ce™ / @) oo (2, 0) oy

IfU =Uyfe, r > e~ 9/¢,

Pierre Monmarché velocity jump processes 04/06/2019 8/16



© Factorization
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Generator of a kinetic process

Decompose the generator L (such that 8; [ ¢p: = [ Lop;) as
L=T+F+D

where
e 7 =w -V, is the transport (only thing acting on x)
e D is reversible w.r.t. M ([ fDgMdv = [ ¢gDfdv)

The target measure is only taken into account by F. If

Y, p /.Fgo(x, v)M(v)dv = — / (v-VU(z)) o(z,v)M(v)dv,

then g is invariant. This condition is linear in VU.
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Factorization

If VU(z) = ZZ]\LI &i(z) and if F; satisfies

Ve, / Fuplar, )M (v)dv = — / (v &(2)) o, ) M(v)dv
then

N
L=T+Y Fi+D
i=1
admits p as an invariant measure.
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Factorization

If VU(z) = Zf\il &i(z) and if F; satisfies

Ve, / Fuplar, )M (v)dv = — / (v &(2)) o, ) M(v)dv

then

N
L=T+Y Fi+D

i=1

admits p as an invariant measure. Examples :
Fip = —&i(z) Ve (drift)
Fip =

(y-&i(@)) 1 (¢ (2, Re; (w,0)) — p(x,v))  (bounce)
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Ex : Zigzag

Decomposing over the canonical basis (e;)1<i<d

Zasz

Each &; is dealt with through bounces.

At rate (y;0z,U())+, vi jumps to —v; % -

(figure Joris Bierkens) .
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Alternative to multi-time-step methods

Suppose U = Uy + Us with

e VUi(x) numerically cheap but with high and fast variation; possibly
singular (ex : short-range interactions).

e VUjy(z) numerically expansive but bounded and with slow variations
(ex : long-range interactions).
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Alternative to multi-time-step methods

Suppose U = Uy + Us with

e VUi(x) numerically cheap but with high and fast variation; possibly
singular (ex : short-range interactions).

@ VU;y(z) numerically expansive but bounded and with slow variations
(ex : long-range interactions).

Example : mean-field Lennard-Jones particles

N
U() = ;z;;vv(m—le)
i=1 j#i

with W (r) = 1/r'2 — 1/r% decomposed as

W(r) =W(r)x(r) + W(r)(1 —x(r)) .
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Decomposition

Considering A; such that ATx = 2; € R3, split

N
VU (2) = VUsnort(x) + > Ai ¥ 92, Utong.j(x)
i=1 i

with Ulong,j(2) = W (| — 4])(1 = x([xi — () /N
Short-range forces are dealt with by a drift, long-range ones by bounces.
Counting the number of computations of W' :

e For a method only with a drift, TN2/6.

@ For the factorized method, short-range forces cost 7/§ x O(N) (if
the number of neighbours is O(1) and a neighbour list is available).
Through a thinning method, for the long-range forces, the average
number of computations also scales as T'N.
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Conclusion

Implementation in progress for molecular dynamics (promising results)

o Numerical efficiency is problem dependent (how to split, how to
bound the jump rates for thinning)

e From bounce to drift (with Pierre-André Zitt and Mathias Rousset)
o /’//"77'/\3
1~

@ Kinetic theory point of view ? Metastability 7 Scaling limits ? Etc.
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