Micro-macro discretizations for collisional kinetic equations of Boltzmann-BGK type in the diffusive s
aling

Anais Crestetto), inicolas Crouseilles , Giacomo Dimarco - and Mohammed Lemou4

AGENCE NATIONALE DE LA RECHER

Bonn, June 3rd, 2019

1 University of Nantes, LMJL.

2 University of Rennes 1, IRMAR & Inria.

 3 University of Ferrara, Department of Mathematics and Computer Science. 4 University of Rennes 1, IRMAR & CNRS & Inria.

Outline

- ² A rst [mi
ro-ma
ro](#page-6-0) model
- ³ Its [Parti
le-In-Cell](#page-12-0) / FV dis
retization
- \bullet some [improvements/extensions](#page-22-0)/

Our problem and objectives

A first micro-macro model Its Particle-In-Cell / FV discretization Some [improvements/extensions](#page-22-0)

Introduction Our pro[blem](#page-4-0) Objectives

1 Our problem and objectives Our problem and [obje
tives](#page-2-0)

- · Introduction
- **·** Our [problem](#page-4-0)
- Objectives [Obje
tives](#page-5-0)

A first micro-macro model

- Its Particle-In-Cell / FV discretization
- Some [improvements/extensions](#page-22-0)

Introduction Our pro[blem](#page-4-0) **Objectives**

Numerical simulation of particle systems Numeri
al simulation of parti
le systems

We are interested in

- \bullet the numerical simulation of kinetic Problems
- **•** different scales: collisions parameterized by the Knudsen number ε .
- the development of schemes that are efficient in both kinetic and fluid regimes.

There are two main strategies for multis
ale problems:

- \bullet domain decomposition methods,
- asymptotic preserving (AP) schemes :

 5 lin SISC 1999 Jin, SISC 1999.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro AP scheme for [Boltzmann-BGK](#page-0-0) 4

Introduction Our pro[blem](#page-4-0) **Objectives**

Our first Problem_ε

1D radiative transport equation in the diffusive scaling 1D radiative transport equation in the diusive s
aling

$$
\partial_t f + \frac{1}{\varepsilon} v \partial_x f = \frac{1}{\varepsilon^2} (\rho M - f) \tag{1}
$$

- \bullet distribution function $f(t, x, v)$,
- $\bullet x \in [0, L_x] \subset \mathbb{R}, v \in V = [-1, 1],$
- charge density $\rho(t,x) = \frac{1}{2} \int_V f \, \mathrm{d}v$,
- $M(v) = 1$,
- \bullet periodic conditions in x and initial conditions.

Main difficulty:

• Knudsen number ε may be of order 1 or tend to 0 in the diffusive scaling. The asymptotic diffusion equation being

$$
\partial_t \rho - \frac{1}{3} \partial_{xx} \rho = 0. \tag{2}
$$

Introduction Our pro[blem](#page-4-0) Objectives

Objectives

- Construction of an AP scheme
- **•** Reduction of the numerical cost at the limit $\varepsilon \to 0$.

Tools

Micro-macro decomposition^{6,7} for this model. Previous work with a grid in v for the micro part 8 , cost was constant w.r.t. $\varepsilon.$

Idea

• Use particles for the micro part since few information in v is ne
essary at the limit.

6 Liu, Yu, CMP 2004. 7 Lemou, Mieussens, SIAM JSC 2008. ⁸Crouseilles, Lemou, KRM 2011.

Derivation of the micro-macro system [Reformulation](#page-10-0) of the mi
ro-ma
ro model

Our problem and objectives Our problem and [obje
tives](#page-2-0)

- (2) A first micro-macro model
	- Derivation of the micro-macro system
	- Reformulation of the micro-macro model

Its Particle-In-Cell / FV discretization

Some [improvements/extensions](#page-22-0)

Derivation of the micro-macro system [Reformulation](#page-10-0) of the mi
ro-ma
ro model

Micro-macro decomposition Mi
ro-ma
ro de
omposition

• Micro-macro decomposition:

$$
f = \rho M + g
$$

with g the perturbation.

 $\bullet \mathcal{N} = \text{Span} \{M\} = \{f = \rho M\}$ null space of the BGK operator $Q(f) = \rho M - f$.

 \bullet Π orthogonal projection onto \mathcal{N} :

$$
\Pi h := \langle h \rangle M, \quad \langle h \rangle := \frac{1}{2} \int h \, \mathrm{d}v.
$$

 \bullet Hypothesis: first moment of g must be zero:

$$
\langle g \rangle = 0
$$
, since $\langle f \rangle = \rho = \langle \rho M \rangle$.

True at the numerical level? If not, we have to work on $\mathrm{i} t^{9,10}.$ ⁹ Degond, Dimarco, Pareschi, IJNMF 2011. ¹⁰C., Crouseilles, Lemou, KRM 2012. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro AP scheme for [Boltzmann-BGK](#page-0-0) 8

Derivation of the micro-macro system [Reformulation](#page-10-0) of the micro-macro model

• Applying Π to $(1) \implies$ $(1) \implies$ macro equation on ρ

$$
\partial_t \rho + \frac{1}{\varepsilon} \partial_x \langle v g \rangle = 0. \tag{3}
$$

• Applying $(I - \Pi)$ to $(1) \implies$ $(1) \implies$ micro equation on g

$$
\partial_t g + \frac{1}{\varepsilon} [v \partial_x \rho M + v \partial_x g - \partial_x \langle v g \rangle M] = -\frac{1}{\varepsilon^2} g. \qquad (4)
$$

Equation $(1) \Leftrightarrow$ $(1) \Leftrightarrow$ micro-macro system:

$$
\begin{cases}\n\partial_t \rho + \frac{1}{\varepsilon} \partial_x \langle v g \rangle = 0, \\
\partial_t g + \frac{1}{\varepsilon} \mathcal{F}(\rho, g) = -\frac{1}{\varepsilon^2} g, \\
\text{where } \mathcal{F}(\rho, g) := v \partial_x \rho M + v \partial_x g - \partial_x \langle v g \rangle M.\n\end{cases}
$$
\n(5)

Derivation of the micro-macro system [Reformulation](#page-10-0) of the mi
ro-ma
ro model

Difficulties

- Stiff terms in the micro equation (4) on g .
- In previous works 11,12 , stiffest term (of order $1/\varepsilon^2)$ considered implicit in time \implies transport term (of order $1/\varepsilon$) stabilized.

But here:

- use of particles for the micro part
- \Rightarrow splitting between the transport term and the source term,
- \Rightarrow not possible to use the same strategy.

Idea?

• Suitable reformulation of the model

¹¹Lemou, Mieussens, SIAM SISC 2008.

¹² Crouseilles, Lemou, KRM 2011.

Derivation of the micro-macro system [Reformulation](#page-10-0) of the micro-macro model

- \bullet Strategy of Lemou¹³: 1. rewrite [\(4\)](#page-8-0) $\partial_t g + \frac{1}{\varepsilon} \mathcal{F}(\rho, g) = -\frac{1}{\varepsilon^2} g$ as $\partial_t (e^{t/\varepsilon^2}g) = - \frac{e^{t/\varepsilon^2}}{\varepsilon}$ $-\mathcal{F}(\rho, g),$
	- 2. integrate in time between two times t^n and $t^{n+1}=t^n+\Delta t$:

$$
e^{t^{n+1}/\varepsilon^2} g^{n+1} = e^{t^n/\varepsilon^2} g^n + \int_{t^n}^{t^{n+1}} -\frac{e^{t/\varepsilon^2}}{\varepsilon} \mathcal{F}(\rho, g) dt,
$$

3. use left-rectangle method for $\mathcal{F}(\rho,g)$ and multiply by $e^{-t^{n+1}/\varepsilon^2}/\Delta t$:

$$
\frac{g^{n+1}-g^n}{\Delta t}=\frac{e^{-\Delta t/\varepsilon^2}-1}{\Delta t}g^n-\varepsilon\frac{1-e^{-\Delta t/\varepsilon^2}}{\Delta t}\mathcal{F}(\rho^n,g^n)+\mathcal{O}(\Delta t),
$$

4. approximate up to terms of order $\mathcal{O}(\Delta t)$ by:

$$
\partial_t g = \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \mathcal{F}(\rho, g).
$$

. No more stiff terms and consistent with the initial micro eq. [\(4\)](#page-8-0). ¹³Lemou, CRAS 2010

Derivation of the micro-macro system [Reformulation](#page-10-0) of the mi
ro-ma
ro model

New micro-macro model

The new micro-macro model writes

$$
\partial_t \rho + \frac{1}{\varepsilon} \partial_x \langle v g \rangle = 0, \tag{6}
$$

$$
\partial_t g = \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \mathcal{F}(\rho, g), \tag{7}
$$

with $\mathcal{F}(\rho, g) = v \partial_x \rho M + v \partial_x g - \partial_x \langle v g \rangle M$.

We propose the following hybrid discretization:

- ma
ro equation [\(6\)](#page-11-0): Finite Volume method,
- **·** micro equation [\(7\)](#page-11-1): Particle method.

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

Our problem and [obje
tives](#page-2-0)

A first micro-macro model

³ Its [Parti
le-In-Cell](#page-12-0) / FV dis
retization

- PIC method
- Finite volumes scheme
- **•** [Properties](#page-20-0)

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

First algorithm First algorithm

Reformulated system

$$
\begin{cases} \partial_t \rho + \frac{1}{\varepsilon} \partial_x \langle v g \rangle = 0, \\ \partial_t g = \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} [v \partial_x \rho M + v \partial_x g - \partial_x \langle v g \rangle M]. \end{cases}
$$

Algorithm

- 1. Solving the micro part by a Particle-In-Cell (PIC) method.
- 2. Projection step to numerically force to zero the first moment of g (matching procedure¹⁴).
- 3. Solving the macro part by a Finite Volume (FV) scheme (mesh on x), with a source term dependent on g .
- 1-3 coupling: similarities with the δf method¹⁵.

¹⁴ Degond, Dimarco, Pareschi, IJNMF 2011.

¹⁵ Brunner, Valeo, Krommes, Phys. of Plasmas 1999.

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

PIC method with evolution of weights

• Model: having N_p particles, with position $x_k(t)$, velocity $v_k(t)$ and weight $\omega_k(t)$, $k = 1, \ldots, N_p$, g is approximated by

$$
g_{N_p}(t,x,v)=\sum_{k=1}^{N_p}\omega_k(t)\,\delta\left(x-x_k(t)\right)\delta\left(v-v_k(t)\right).
$$

• Initialization: positions and velocities of particles uniformly distributed in phase space (x, v) , weights initialized to

$$
\omega_k(0)=g(0,x_k,v_k)\frac{L_xL_v}{N_p},
$$

 $(L_x, x$ -length of the domain, L_y v-length).

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

Splitting between transport and source part Splitting between transport and sour
e part

• Equation on g

$$
\partial_t \mathbf{g} + \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} [\mathbf{v} \partial_{\mathbf{x}} \mathbf{g}] = S_{\mathbf{g}}
$$

where

$$
S_g := \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} [v \partial_x \rho M - \partial_x \langle v g \rangle M].
$$

Solve transport part $\partial_t \mathbf{g} + \varepsilon \frac{1-e^{-\Delta t/\varepsilon^2}}{\Delta t} [v \partial_\mathbf{x} \mathbf{g}] = 0$ thanks to motion equation

$$
\frac{dx_k}{dt}(t)=\varepsilon\frac{1-e^{-\Delta t/\varepsilon^2}}{\Delta t}v_k(t).
$$

For example

$$
x_k^{n+1} = x_k^n + \varepsilon (1 - e^{-\Delta t/\varepsilon^2}) v_k.
$$

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

• Solve source part $∂_t g = S_g$ by evolution of weights $ω_k$:

$$
\frac{d\omega_k}{dt}(t) = S_g(x_k, v_k) \frac{L_x L_v}{N_p}
$$

with $e^{-\Delta t/\varepsilon^2}-1$ $\frac{t/\varepsilon^2-1}{\Delta t}$ g – $\varepsilon\frac{1-e^{-\Delta t/\varepsilon^2}}{\Delta t}$ $S_{\rm g} =$ Δt $[v \partial_x \rho M - \partial_x \langle v g \rangle M].$

In practice:

$$
\frac{\omega_k^{n+1}-\omega_k^n}{\Delta t}=\frac{e^{-\Delta t/\varepsilon^2}-1}{\Delta t}\omega_k^n-\varepsilon\frac{1-e^{-\Delta t/\varepsilon^2}}{\Delta t}\left[\alpha_k^n+\beta_k^n\right],
$$

with
$$
\alpha_k^n = v_k \partial_x \rho^n (x_k^{n+1}) M(v_k) \frac{L_x L_v}{N_p}
$$

and $\beta_k^n = -\partial_x \langle v g \rangle (x_k^{n+1}) M(v_k) \frac{L_x L_v}{N_p}$.

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

Macro part

- Equation $\partial_t \rho + \frac{1}{\varepsilon} \partial_x \langle v g \rangle = 0$.
- **•** First proposition:

$$
\rho_i^{n+1} = \rho_i^n - \frac{\Delta t}{\varepsilon} \partial_x \langle v g^{n+1} \rangle_i,
$$

dis
retized by a Finite Volume method:

$$
\rho_i^n \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \rho(t^n, x) dx,
$$

$$
\langle v g^n \rangle_i = \frac{1}{2\Delta x} \sum_{x_k \in [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]} v_k \omega_k^n \approx \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \langle v g \rangle (t^n, x) dx.
$$

Problem: g^{n+1} suffers from numerical noise inherent to particles method. This hoise, amplified by $\frac{1}{\varepsilon}$, will damage ρ^{n+1}

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

Correction of the macro discretization

· Write

$$
\omega_k^{n+1} = e^{-\Delta t/\varepsilon^2} \omega_k^n - \varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \left[\frac{\omega_{\mathcal{X},\rho} M}{\alpha_k^n} + \frac{-\partial_{\mathcal{X}} \langle v g \rangle M}{\beta_k^n} \right].
$$

Let $h_i^n := e^{-\Delta t/\varepsilon^2} \langle v g^n \rangle_i - \varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \langle -v \partial_x \langle v g \rangle M \rangle_i$ and approximate

$$
\langle v g^{n+1} \rangle_i = -\varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \frac{1}{3} \partial_x \rho_i^n + h_i^n.
$$

• Inject it in the macro equation

$$
\rho_i^{n+1} = \rho_i^n + \Delta t (1 - e^{-\Delta t/\varepsilon^2}) \frac{1}{3} \partial_{xx} \rho_i^n - \frac{\Delta t}{\varepsilon} \partial_x h_i^n.
$$

Remark: when $\varepsilon \to 0$, $h_i^n = \mathcal{O}(\varepsilon^2)$.

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

Correction of the macro discretization

a Write

approximately a structure of the control o

$$
\omega_k^{n+1} = e^{-\Delta t/\varepsilon^2} \omega_k^n - \varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \left[\frac{v \partial_x \rho M}{\alpha_k^n} + \frac{-\partial_x \langle v g \rangle M}{\beta_k^n} \right].
$$

• Let $h_i^n := e^{-\Delta t/\varepsilon^2} \langle v g^n \rangle_i - \varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \langle -v \partial_x \langle v g \rangle M \rangle_i$ and
approximate

$$
\langle v g^{n+1} \rangle_i = -\varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \frac{1}{3} \partial_x \rho_i^n + h_i^n.
$$

• Inject it in the macro equation and take the diffusion term implicit

$$
\rho_i^{n+1} = \rho_i^n + \Delta t (1 - e^{-\Delta t/\varepsilon^2}) \frac{1}{3} \partial_{xx} \rho_i^{n+1} - \frac{\Delta t}{\varepsilon} \partial_x h_i^n
$$

.

Remark: when $\varepsilon \to 0$, $h_i^n = \mathcal{O}(\varepsilon^2)$.

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

Properties Properties and the properties of the p

- For fixed $\varepsilon > 0$, the scheme is a first-order (in time) approximation of the reformulated micro-macro system. approximation of the reformulated mi
ro-ma
ro system.
- For fixed $\Delta t > 0$, the scheme degenerates into an implicit first-order (in time) scheme of the diffusion equation (2) .

 \Rightarrow AP property

- No parabolic CFL condition of type $\Delta t \leq C \Delta x^2$.
- \bullet No more stiffness, the numerical noise does not damage ρ .
- \bullet We only need a few particles at the limit to represent g : cost reduced.

PIC [method](#page-14-0) Finite [volumes](#page-17-0) s
heme [Properties](#page-20-0)

Asymptoti behaviour

Initial distribution function
\n
$$
f(t = 0, x, v) = 1 + \cos(2\pi (x + \frac{1}{2})), \quad x \in [0, 1], v \in [-1, 1].
$$

\nDensity $\rho(t, x) = \frac{1}{2} \int_{-1}^{1} f(t, x, v) dv$, and $M(v) = 1$.

Left:
$$
T = 0.1
$$
, $N_x = 64$, $N_p = 10^4$, $\Delta t = 10^{-3}$,
Right: $T = 0.1$, $N_x = 64$, $\varepsilon = 10^{-6}$, $\Delta t = 10^{-2}$.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Our problem and objectives Our problem and [obje
tives](#page-2-0)

A first micro-macro model

³ Its [Parti
le-In-Cell](#page-12-0) / FV dis
retization

⁴ Some [improvements/extensions](#page-22-0)

- Second-order in time
- Vlasov-BGK-Poisson model
- · Multi-dimensional testcases

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

How to \ldots

- How to derive a second-order in time scheme?
- \bullet How to consider a Probleme with an electric field? Details in [C., Crouseilles, Lemou, CMS 2018].
- How to consider $d_x = d_y = 2$ or $d_x = d_y = 3$ testcases?
- How to automatically reduce the number of particles? Details in [C., Crouseilles, Dimarco, Lemou, JCP 2019].

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

How to derive a second-order in time scheme?

- Work on the micro-macro model
- Work, of course, on the time scheme. work, on the time set of t
- **a** lnsure the order of the time scheme at the limit too

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

New reformulation of the micro-macro system

When integrating in time $\partial_t (e^{t/\varepsilon^2}g) = - \frac{e^{t/\varepsilon^2}}{\varepsilon} \mathcal{F}(\rho, g)$, use a midpoint method for the right-hand side

$$
g^{n+1} = e^{-\Delta t/\varepsilon^2} g^n - \frac{\Delta t e^{-\Delta t/2\varepsilon^2}}{\varepsilon} \mathcal{F}\left(\rho^{n+1/2}, g^{n+1/2}\right) + \mathcal{O}\left(\Delta t^3\right).
$$

• Make appear a discrete time derivative
\n
$$
\frac{g^{n+1}-g^n}{\Delta t}=\frac{e^{-\Delta t/\varepsilon^2}-1}{\Delta t}g^n-\frac{e^{-\Delta t/2\varepsilon^2}}{\varepsilon}\mathcal{F}\left(\rho^{n+1/2},g^{n+1/2}\right)+\mathcal{O}\left(\Delta t^2\right).
$$

Perform Taylor expansions at $t^{n+1/2}$

$$
\partial_t g^{n+1/2} = \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} \bigg(g^{n+1/2} - \frac{\Delta t}{2} \partial_t g^{n+1/2} \bigg) - \frac{e^{-\Delta t/2\varepsilon^2}}{\varepsilon} \mathcal{F} \bigg(\rho^{n+1/2}, g^{n+1/2} \bigg) + \mathcal{O} \left(\Delta t^2 \right).
$$

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

· New second-order micro-macro system:

$$
\partial_t \rho + \frac{1}{\varepsilon} \partial_x \langle v g \rangle = 0,
$$
\n
$$
\partial_t g = \frac{2}{\Delta t} \frac{e^{-\Delta t/\varepsilon^2} - 1}{e^{-\Delta t/\varepsilon^2} + 1} g - \frac{2}{\varepsilon} \frac{e^{-\Delta t/2\varepsilon^2}}{e^{-\Delta t/\varepsilon^2} + 1} \left[v \partial_x \rho M + v \partial_x g - \partial_x \langle v g \rangle M \right].
$$
\n• Time scheme of second order: \rightarrow Prediction step on $\Delta t/2$:
\n
$$
g^{n+1/2} = g^n + \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t/\varepsilon^2 + 1} g^n - \frac{\Delta t}{\Delta t} \frac{e^{-\Delta t/2\varepsilon^2}}{\Delta t/\varepsilon^2 + 1} \mathcal{F}(\rho^n, g^n),
$$

$$
g^{n+1/2} = g^n + \frac{1}{e^{-\Delta t/\varepsilon^2} + 1} g^n - \frac{1}{\varepsilon} \frac{1}{e^{-\Delta t/\varepsilon^2} + 1} \mathcal{F}(\rho^n, g^n),
$$

$$
\rho^{n+1/2} = \rho^n - \frac{\Delta t}{2\varepsilon} \partial_x \langle v g^{n+1/2} \rangle,
$$

 \rightarrow Correction step on Δt :

$$
g^{n+1} = g^n + 2 \frac{e^{-\Delta t/\varepsilon^2} - 1}{e^{-\Delta t/\varepsilon^2} + 1} \widetilde{g} - \frac{2\Delta t}{\varepsilon} \frac{e^{-\Delta t/2\varepsilon^2}}{e^{-\Delta t/\varepsilon^2} + 1} \mathcal{F}\left(\rho^{n+1/2}, g^{n+1/2}\right),
$$

$$
\rho^{n+1} = \rho^n - \frac{\Delta t}{\varepsilon} \partial_x \langle v g^{n+1/2} \rangle.
$$

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Choice of g in order to have a second-order in time sending and the right asymptotic limit: $\widetilde{g} = \frac{g^n + g^{n+1}}{2}$.

• Correct the macro equation:

$$
\rho_i^{n+1} = \rho_i^n - \frac{\Delta t}{\varepsilon} \partial_x \langle v g^{n+1/2} \rangle_i + \Delta t (1 - e^{-\Delta t/\varepsilon^2})^2 \frac{1}{3} \partial_{xx} \big(\frac{\rho_i^{n+1} + \rho_i^n}{2} \big).
$$

• Same PIC/FV discretization in space as for the first-order scheme.

Properties

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

- For fixed $\varepsilon > 0$, the scheme is a second-order (in time) approximation of the reformulated micro-macro system.
- For fixed $\Delta t > 0$, the scheme degenerates into an implicit second-order (in time) scheme of the diffusion equation [\(2\)](#page-4-2).

 \Rightarrow 2nd-order in time $+$ AP property

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Convergen
e - 2nd-order in time

Initial distribution function

$$
f(t = 0, x, v) = 1 + \cos\left(2\pi\left(x + \frac{1}{2}\right)\right), \quad x \in [0, 1], v \in [-1, 1].
$$

Parameters: $T = 0.1$, $N_x = 16$, $N_p = 100$.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

How to consider a Problem_e with an electric field?

1D Vlasov-BGK equation in the diffusive scaling 10 december 1986 et alian diusive substitution in the diusive second control of the diusive second control of

$$
\partial_t f + \frac{1}{\varepsilon} v \partial_x f + \frac{1}{\varepsilon} E \partial_v f = \frac{1}{\varepsilon^2} (\rho M - f) \tag{8}
$$

$$
\bullet \ \ x \in [0, L_x] \subset \mathbb{R}, \ \nu \in V = \mathbb{R},
$$

• charge density
$$
\rho(t, x) = \int_V f \, dv
$$
,

• electric field $E(t, x)$ given by Poisson equation $\partial_x E = \rho - 1$,

•
$$
M(v) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{v^2}{2}\right)
$$
,

 \bullet periodic conditions in x and initial conditions.

Multiscale framework:

• Knudsen number ε may be of order 1 or tend to 0 at the drift-diffusion limit

$$
\partial_t \rho - \partial_x (\partial_x \rho - \mathcal{E} \rho) = 0. \tag{9}
$$

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Not any more difficult

• Change the definition of $\mathcal{F}(\rho, g)$:

$$
\mathcal{F}(\rho,g)=v\partial_x\rho M+v\partial_xg-\partial_x\langle v g\rangle M-vME\rho+E\partial_vg.
$$

- \bullet Same reformulation of the micro-macro system with this ${\cal F}$.
- Evolve positions and velocity of particles by considering

$$
v_k^{n+1} = v_k^n + \varepsilon (1 - e^{-\Delta t/\varepsilon^2}) E^n(x_k^n).
$$

• Solve Poisson equation $\partial_x E = \rho - 1$ thanks to FFT or finite differences.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Landau damping

• Initial distribution function:

$$
f(t=0,x,v)=\frac{1}{\sqrt{2\pi}}\exp(-\frac{v^2}{2})(1+\alpha\cos(kx)), x\in[0,\frac{2\pi}{k}], v\in\mathbb{R}.
$$

• Micro-macro initializations:

$$
\rho(t=0,x)=1+\alpha \cos(kx) \quad \text{and} \quad g(t=0,x,v)=0.
$$

• Parameters: $\alpha = 0.05$, $k = 0.5$.

• Electrical energy
$$
\mathcal{E}(t) = \sqrt{\int E(t,x)^2 dx}.
$$

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Evolution in time of the electrical energy

Kineti and intermediate regimes Left: $\varepsilon = 1$, $N_x = 128$, $N_p = 10^5$, $\Delta t = 0.1$. Right: $\varepsilon = 0.5$, $N_x = 256$, $N_p = 10^5$, $\Delta t = 0.01$.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Evolution in time of the electrical energy

Limit regime Left: $\varepsilon = 0.1$, $N_x = 128$, $N_p = 10^4$, $\Delta t = 0.001$, Right: $\varepsilon = 10^{-4}$, $N_x = 128$, $N_p = 100$, $\Delta t = 0.01$.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Two stream instability

 \bullet

· Initial distribution function

$$
f(t=0,x,v)=\frac{v^2}{\sqrt{2\pi}}\exp(-\frac{v^2}{2})(1+\alpha\cos(kx)), x\in[0,\frac{2\pi}{k}], v\in\mathbb{R}.
$$

• Micro-macro initializations

$$
\rho(t = 0, x) = 1 + \alpha \cos(kx)
$$

$$
g(t = 0, x, v) = \frac{1}{\sqrt{2\pi}} (v^2 - 1) \exp\left(-\frac{v^2}{2}\right) (1 + \alpha \cos(kx)).
$$

Parameters: $\alpha = 0.05, k = 0.5$.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Evolution in time of the electrical energy

Kinetic and intermediate regimes Kineti and intermediate regimes Left: $\varepsilon = 1$, $N_x = 128$, $N_p = 10^5$, $\Delta t = 0.1$. Right: $\varepsilon = 0.5$, $N_x = 256$, $N_p = 10^5$, $\Delta t = 0.01$.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Evolution in time of the electrical energy

Limit regime Left: $\varepsilon = 0.1, N_x = 128, N_p = 10^4, \Delta t = 0.001.$ Right: $\varepsilon = 10^{-4}$, $N_x = 128$, $N_p = 100$, $\Delta t = 0.01$.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Convergen
e - 2nd-order in time

Left: Landau damping case. Left: Landau damping ase. Right: two stream instability ase. Parameters: $T = 0.1$, $N_x = 16$, $N_p = 100$.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

How to consider $d_x = d_y = 2$ or $d_x = d_y = 3$ testcases?

- In the radiative transport equation case (no electric field), use Monte Carlo techniques 16,17 for the particles discretization.
- Since the cost will be smaller, we can consider e the smaller, we have smaller, we have smaller than the smaller than the smaller than the smaller, we have smaller, we have smaller than the smaller than multi-dimensional frameworks: $(d_x, d_y) = (2, 2)$ or $(3, 3)$.

$$
\partial_t f + \frac{1}{\varepsilon} \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\varepsilon^2} (\rho M - f) \tag{10}
$$

$$
\bullet\ \mathbf{x}\in\Omega\subset\mathbb{R}^{d_{\mathbf{x}}},\,\mathbf{v}\in V=\mathbb{R}^{d_{\mathbf{v}}}
$$

• charge density
$$
\rho(t, \mathbf{x}) = \int_{V} f(t, \mathbf{x}, \mathbf{v}) d\mathbf{v}
$$
,

•
$$
M(\mathbf{v}) = \frac{1}{(2\pi)^{d_v/2}} \exp\left(-\frac{|\mathbf{v}|^2}{2}\right).
$$

o periodic conditions in x and initial conditions.

The asymptotic diffusion equation being

$$
\frac{\partial_t \rho}{\partial x^{\beta}} - \Delta_{\mathbf{x}} \rho = 0. \tag{11}
$$

16Degond, Dimar
o, Pares
hi, IJNMF 2011.

¹⁷ Dimarco, Pareschi, Samaey, SISC 2018.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

How to automatically reduce the number of particles? How to automati
ally redu
e the number of parti
les?

- **•** Same reformulation of the micro-macro system.
- **•** Consider that the number of particles depends on t and that the weights are onstant:

$$
g_{N^{n}}(t^{n}, \mathbf{x}, \mathbf{v}) = \sum_{k=1}^{N^{n}} \omega_{k} \delta(\mathbf{x} - \mathbf{x_{k}^{n}}) \delta(\mathbf{v} - \mathbf{v_{k}^{n}}).
$$

- \bullet Initially, sample particles corresponding to $g(t=0, x, v)$.
- Solve transport part of the micro equation as previously (motion equations).

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

• Solve source part of the micro equation

$$
g^{n+1} = e^{-\Delta t/\varepsilon^2} \tilde{g}^n + (1 - e^{-\Delta t/\varepsilon^2}) \varepsilon \left[-v \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{g} \rangle^n M \right],
$$

where $\widetilde{g}^{\,n}$ is the function after the function after the transport part, and the transport part, and the transport part, a

with Monte Carlo techniques:

- with probability $e^{-\Delta t/\varepsilon^2}$, the distribution \boldsymbol{g}^{n+1} does not hange,
- with probability $(1-e^{-\Delta t/\varepsilon^2})$, the distribution g^{n+1} is replaced by a new distribution given by $\varepsilon \big[- \mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{\mathbf{g}} \rangle^n M \big].$

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

• Solve source part of the micro equation Solve sour
e part of the mi
ro equation

$$
g^{n+1} = e^{-\Delta t/\varepsilon^2} \tilde{g}^n + (1 - e^{-\Delta t/\varepsilon^2}) \varepsilon \left[-v \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{g} \rangle^n M \right],
$$

where $\tilde{g}^{\,n}$ is the function after the transport part,

with Monte Carlo techniques:

- keep $e^{-\Delta t/\varepsilon^2}N^{n}$ particles unchanged (uniformly taken in each ell) and delete the others,
- create new particles by sampling

$$
(1-e^{-\Delta t/\varepsilon^2})\varepsilon\big[-\mathbf{v}\cdot\nabla_{\mathbf{x}}\rho^n M+\nabla_{\mathbf{x}}\cdot\langle\mathbf{v}\tilde{\mathbf{g}}\rangle^n M\big].
$$

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Time evolution of the number of parti
les

Time evolution of the number of particles in a $d_x = d_y = 2$ case.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Slightly different model with $\varepsilon(\mathbf{x})$

Position of particles. Position of parti
les. Left: particles at $T = 0$. Middle: particles at $T = 1$. Right: $\varepsilon(\mathbf{x})$.

x

Density profile $\rho(T = 1, x, y)$.

Left: micro-macro Monte Carlo. Right: reference micro-macro grid.

y

[Second-order in time](#page--1-0) [Vlasov-BGK-Poisson model](#page--1-0) [Multi-dimensional testcases](#page-45-0)

Full
$$
d_x = d_v = 3
$$
 case

Integral of the distribution function in space $\int_{\mathbf{x}}f(\, \mathcal{T},\mathbf{x},\mathbf{v})d\mathbf{x}$

Left: $\varepsilon = 1$, right: $\varepsilon = 0.5$, $T = 1$.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou [Micro-macro AP scheme for Boltzmann-BGK 44](#page--1-0)

Conclusions

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

- Right asymptotic behaviour: AP schemes.
- Possible to extend to a 2nd-order in time scheme
- **•** Computational cost reduces as the equilibrium is approached.
- **•** Numerical noise smaller than a standard particle method on f.
- \bullet Implicit treatment of the diffusion term.
- Suitable for multi-dimensional testcases.

Future works

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

- More 3D-3D testcases, more physical relevance.
- **•** Boltzmann operator.
- Add an electromagnetic field in the Monte Carlo / FV strategy.

[Se
ond-order](#page-24-0) in time [Vlasov-BGK-Poisson](#page-30-0) model [Multi-dimensional](#page-39-0) test
ases

Thank you for your attention!