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Introdution

Our problem

Objetives

Numerial simulation of partile systems

We are interested in

the numerial simulation of kineti Problemsε,

di�erent sales: ollisions parameterized by the Knudsen

number ε,

the development of shemes that are e�ient in both kineti

and �uid regimes.

There are two main strategies for multisale problems:

domain deomposition methods,

asymptoti preserving (AP) shemes

5

.

5

Jin, SISC 1999.
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Introdution

Our problem

Objetives

Our �rst Problemε

1D radiative transport equation in the di�usive saling

∂
t

f +
1

ε
v∂

x

f =
1

ε2
(ρM − f ) (1)

distribution funtion f (t, x , v),
x ∈ [0, L

x

] ⊂ R, v ∈ V = [−1, 1],
harge density ρ(t, x) = 1

2

∫
V

f dv ,

M (v) = 1,

periodi onditions in x and initial onditions.

Main di�ulty:

Knudsen number ε may be of order 1 or tend to 0 in the

di�usive saling. The asymptoti di�usion equation being

∂
t

ρ− 1

3

∂
xx

ρ = 0. (2)
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Objetives

Constrution of an AP sheme.

Redution of the numerial ost at the limit ε → 0.

Tools

Miro-maro deomposition

6,7
for this model. Previous work

with a grid in v for the miro part

8

, ost was onstant w.r.t. ε.

Idea

Use partiles for the miro part sine few information in v is

neessary at the limit.

6

Liu, Yu, CMP 2004.

7

Lemou, Mieussens, SIAM JSC 2008.

8

Crouseilles, Lemou, KRM 2011.
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Miro-maro deomposition

Miro-maro deomposition:

f = ρM + g

with g the perturbation.

N = Span {M} = {f = ρM} null spae of the BGK operator

Q (f ) = ρM − f .

Π orthogonal projetion onto N :

Πh := 〈h〉M, 〈h〉 := 1

2

∫
h dv .

Hypothesis: �rst moment of g must be zero:

〈g〉 = 0, sine 〈f 〉 = ρ = 〈ρM〉.
True at the numerial level? If not, we have to work on it

9,10
.

9

Degond, Dimaro, Pareshi, IJNMF 2011.

10

C., Crouseilles, Lemou, KRM 2012.
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Applying Π to (1) =⇒ maro equation on ρ

∂
t

ρ+
1

ε
∂
x

〈vg〉 = 0. (3)

Applying (I − Π) to (1) =⇒ miro equation on g

∂
t

g +
1

ε
[v∂

x

ρM + v∂
x

g − ∂
x

〈vg〉M] = − 1

ε2
g . (4)

Equation (1) ⇔ miro-maro system:



∂
t

ρ+
1

ε
∂
x

〈vg〉 = 0,

∂
t

g +
1

ε
F(ρ, g) = − 1

ε2
g ,

(5)

where F(ρ, g) := v∂
x

ρM + v∂
x

g − ∂
x

〈vg〉M.
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Di�ulties

Sti� terms in the miro equation (4) on g .

In previous works

11 ,12
, sti�est term (of order 1/ε2) onsidered

impliit in time =⇒ transport term (of order 1/ε) stabilized.

But here:

use of partiles for the miro part

⇒ splitting between the transport term and the soure term,

⇒ not possible to use the same strategy.

Idea?

Suitable reformulation of the model.

11

Lemou, Mieussens, SIAM SISC 2008.

12

Crouseilles, Lemou, KRM 2011.
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Strategy of Lemou

13

:

1. rewrite (4) ∂
t

g + 1

εF(ρ, g) = − 1

ε2 g as

∂
t

(et/ε
2

g) = −e

t/ε2

ε
F(ρ, g),

2. integrate in time between two times t

n

and t

n+1 = t

n +∆t:

e

t

n+1/ε2
g

n+1 = e

t

n/ε2
g

n +

∫
t

n+1

t

n

−e

t/ε2

ε
F(ρ, g)dt,

3. use left-retangle method for F(ρ, g) and multiply by e

−t

n+1/ε2/∆t:

g

n+1 − g

n

∆t

=
e

−∆t/ε2 − 1

∆t

g

n − ε
1− e

−∆t/ε2

∆t

F(ρn, gn) +O(∆t),

4. approximate up to terms of order O(∆t) by:

∂
t

g =
e

−∆t/ε2 − 1

∆t

g − ε
1− e

−∆t/ε2

∆t

F(ρ, g).

No more sti� terms and onsistent with the initial miro eq. (4).

13

Lemou, CRAS 2010.
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New miro-maro model

The new miro-maro model writes

∂
t

ρ+
1

ε
∂
x

〈vg〉 = 0, (6)

∂
t

g =
e

−∆t/ε2 − 1

∆t

g − ε
1− e

−∆t/ε2

∆t

F (ρ, g) , (7)

with F (ρ, g) = v∂
x

ρM + v∂
x

g − ∂
x

〈vg〉M.

We propose the following hybrid disretization:

maro equation (6): Finite Volume method,

miro equation (7): Partile method.
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Reformulated system



∂
t

ρ+
1

ε
∂
x

〈vg〉 = 0,

∂
t

g =
e

−∆t/ε2 − 1

∆t

g − ε
1− e

−∆t/ε2

∆t

[v∂
x

ρM + v∂
x

g − ∂
x

〈vg〉M].

Algorithm

1. Solving the miro part by a Partile-In-Cell (PIC) method.

2. Projetion step to numerially fore to zero the �rst moment

of g (mathing proedure

14

).

3. Solving the maro part by a Finite Volume (FV) sheme (mesh

on x), with a soure term dependent on g .

1-3 oupling: similarities with the δf method

15

.

14

Degond, Dimaro, Pareshi, IJNMF 2011.

15

Brunner, Valeo, Krommes, Phys. of Plasmas 1999.
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PIC method with evolution of weights

Model: having N

p

partiles, with position x

k

(t), veloity v
k

(t)
and weight ω

k

(t), k = 1, . . . ,N
p

, g is approximated by

g

N

p

(t, x , v) =

N

p∑

k=1

ω
k

(t) δ (x − x

k

(t)) δ (v − v

k

(t)) .

Initialization: positions and veloities of partiles uniformly

distributed in phase spae (x , v), weights initialized to

ω
k

(0) = g (0, x
k

, v
k

)
L

x

L

v

N

p

,

(L

x

x-length of the domain, L

v

v -length).
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Splitting between transport and soure part

Equation on g

∂
t

g + ε
1− e

−∆t/ε2

∆t

[v∂
x

g ] = S

g

where

S

g

:=
e

−∆t/ε2 − 1

∆t

g − ε
1− e

−∆t/ε2

∆t

[v∂
x

ρM − ∂
x

〈vg〉M].

Solve transport part ∂
t

g + ε1−e

−∆t/ε2

∆t

[v∂
x

g ] = 0 thanks to

motion equation

dx

k

dt

(t) = ε
1− e

−∆t/ε2

∆t

v

k

(t) .

For example

x

n+1

k

= x

n

k

+ ε(1− e

−∆t/ε2)v
k

.
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Solve soure part ∂
t

g = S

g

by evolution of weights ω
k

:

dω
k

dt

(t) = S

g

(x
k

, v
k

)
L

x

L

v

N

p

with

S

g

=
e

−∆t/ε2 − 1

∆t

g − ε
1− e

−∆t/ε2

∆t

[v∂
x

ρM − ∂
x

〈vg〉M].

In pratie:

ωn+1

k

− ωn

k

∆t

=
e

−∆t/ε2 − 1

∆t

ωn

k

− ε
1− e

−∆t/ε2

∆t

[αn

k

+ βn
k

] ,

with αn

k

= v

k

∂
x

ρn(xn+1

k

)M(v
k

)
L

x

L

v

N

p

and βn
k

= −∂
x

〈vg〉(xn+1

k

)M(v
k

)
L

x

L

v

N

p

.

A. Crestetto, N. Crouseilles, G. Dimaro, M. Lemou Miro-maro AP sheme for Boltzmann-BGK 17



Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

PIC method

Finite volumes sheme

Properties

Maro part

Equation ∂
t

ρ+ 1

ε∂x〈vg〉 = 0.

First proposition:

ρn+1

i

= ρn
i

− ∆t

ε
∂
x

〈vgn+1〉
i

,

disretized by a Finite Volume method:

ρn
i

≈ 1

∆x

∫
x

i+1/2

x

i−1/2

ρ(tn, x)dx ,

〈vgn〉
i

=
1

2∆x

∑

x

k

∈[x
i−

1

2

,x
i+ 1

2

]

v

k

ωn

k

≈ 1

∆x

∫
x

i+1/2

x

i−1/2

〈vg〉(tn, x)dx .

Problem: g

n+1

su�ers from numerial noise inherent to

partiles method. This noise, ampli�ed by

1

ε , will damage

ρn+1

.
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Corretion of the maro disretization

Write

ωn+1

k

= e

−∆t/ε2ωn

k

− ε(1− e

−∆t/ε2)



v∂

x

ρM︷︸︸︷
αn

k

+

−∂
x

〈vg〉M︷︸︸︷
βn
k


 .

Let h

n

i

:= e

−∆t/ε2〈vgn〉
i

− ε(1− e

−∆t/ε2)〈−v∂
x

〈vg〉M〉
i

and

approximate

〈vgn+1〉
i

= −ε(1− e

−∆t/ε2)
1

3

∂
x

ρn
i

+ h

n

i

.

Injet it in the maro equation

ρn+1

i

= ρn
i

+∆t(1− e

−∆t/ε2)
1

3

∂
xx

ρn
i

− ∆t

ε
∂
x

h

n

i

.

Remark: when ε → 0, h

n

i

= O(ε2).
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Corretion of the maro disretization

Write

ωn+1

k

= e

−∆t/ε2ωn

k

− ε(1− e

−∆t/ε2)



v∂

x

ρM︷︸︸︷
αn

k

+

−∂
x

〈vg〉M︷︸︸︷
βn
k


 .

Let h

n

i

:= e

−∆t/ε2〈vgn〉
i

− ε(1− e

−∆t/ε2)〈−v∂
x

〈vg〉M〉
i

and

approximate

〈vgn+1〉
i

= −ε(1− e

−∆t/ε2)
1

3

∂
x

ρn
i

+ h

n

i

.

Injet it in the maro equation and take the di�usion term

impliit

ρn+1

i

= ρn
i

+∆t(1− e

−∆t/ε2)
1

3

∂
xx

ρn+1

i

− ∆t

ε
∂
x

h

n

i

.

Remark: when ε → 0, h

n

i

= O(ε2).
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Properties

For �xed ε > 0, the sheme is a �rst-order (in time)

approximation of the reformulated miro-maro system.

For �xed ∆t > 0, the sheme degenerates into an impliit

�rst-order (in time) sheme of the di�usion equation (2).

⇒ AP property

No paraboli CFL ondition of type ∆t ≤ C∆x

2

.

No more sti�ness, the numerial noise does not damage ρ.

We only need a few partiles at the limit to represent g : ost

redued.
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Asymptoti behaviour

Initial distribution funtion

f (t = 0, x , v) = 1+ cos
(
2π

(
x + 1

2

))
, x ∈ [0, 1] , v ∈ [−1, 1] .

Density ρ(t, x) = 1

2

∫
1

−1

f (t, x , v)dv , and M(v) = 1.

Left: T = 0.1, N
x

= 64, N

p

= 10

4

, ∆t = 10

−3

,

Right: T = 0.1, N
x

= 64, ε = 10

−6

, ∆t = 10

−2

.
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ε=1
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4
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Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

How to...

How to derive a seond-order in time sheme?

How to onsider a Problemε with an eletri �eld?

Details in [C., Crouseilles, Lemou, CMS 2018℄.

How to onsider d

x

= d

v

= 2 or d

x

= d

v

= 3 testases?

How to automatially redue the number of partiles?

Details in [C., Crouseilles, Dimaro, Lemou, JCP 2019℄.
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Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

How to derive a seond-order in time sheme?

Work on the miro-maro model.

Work, of ourse, on the time sheme.

Insure the order of the time sheme at the limit too.
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Multi-dimensional testases

New reformulation of the miro-maro system

When integrating in time ∂
t

(et/ε
2

g) = − e

t/ε2

ε F(ρ, g), use a
midpoint method for the right-hand side

g

n+1 = e

−∆t/ε2
g

n − ∆te

−∆t/2ε2

ε
F
(
ρn+1/2, gn+1/2

)
+O

(
∆t

3

)
.

Make appear a disrete time derivative

g

n+1 − g

n

∆t

=
e

−∆t/ε2 − 1

∆t

g

n−e

−∆t/2ε2

ε
F
(
ρn+1/2, gn+1/2

)
+O

(
∆t

2

)
.

Perform Taylor expansions at t

n+1/2

∂
t

g

n+1/2=
e

−∆t/ε2−1

∆t

(
g

n+1/2 − ∆t

2

∂
t

g

n+1/2

)

− e

−∆t/2ε2

ε
F
(
ρn+1/2, gn+1/2

)
+O

(
∆t

2

)
.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

New seond-order miro-maro system:

∂
t

ρ+
1

ε
∂
x

〈vg〉 = 0,

∂
t

g =
2

∆t

e

−∆t/ε2 − 1

e

−∆t/ε2 + 1

g − 2

ε

e

−∆t/2ε2

e

−∆t/ε2 + 1

[v∂
x

ρM + v∂
x

g − ∂
x

〈vg〉M] .

Time sheme of seond order: → Predition step on ∆t/2:

g

n+1/2 =gn +
e

−∆t/ε2 − 1

e

−∆t/ε2 + 1

g

n − ∆t

ε

e

−∆t/2ε2

e

−∆t/ε2 + 1

F (ρn, gn) ,

ρn+1/2 =ρn − ∆t

2ε
∂
x

〈vgn+1/2〉,
→ Corretion step on ∆t:

g

n+1 =gn + 2

e

−∆t/ε2 − 1

e

−∆t/ε2 + 1

g̃ − 2∆t

ε

e

−∆t/2ε2

e

−∆t/ε2 + 1

F
(
ρn+1/2, gn+1/2

)
,

ρn+1 =ρn − ∆t

ε
∂
x

〈vgn+1/2〉.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Choie of g̃ in order to have a seond-order in time sheme

and the right asymptoti limit: g̃ = g

n+g

n+1

2

.

Corret the maro equation:

ρn+1

i

= ρn
i

− ∆t

ε
∂
x

〈vgn+1/2〉
i

+∆t(1− e

−∆t/ε2)2
1

3

∂
xx

(
ρn+1

i

+ ρn
i

2

).

Same PIC/FV disretization in spae as for the �rst-order

sheme.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Properties

For �xed ε > 0, the sheme is a seond-order (in time)

approximation of the reformulated miro-maro system.

For �xed ∆t > 0, the sheme degenerates into an impliit

seond-order (in time) sheme of the di�usion equation (2).

⇒ 2nd-order in time + AP property
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Convergene - 2nd-order in time

Initial distribution funtion

f (t = 0, x , v) = 1+ cos

(
2π

(
x +

1

2

))
, x ∈ [0, 1] , v ∈ [−1, 1] .

Parameters: T = 0.1, N
x

= 16, N

p

= 100.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

How to onsider a Problemε with an eletri �eld?

1D Vlasov-BGK equation in the di�usive saling

∂
t

f +
1

ε
v∂

x

f +
1

ε
E∂

v

f =
1

ε2
(ρM − f ) (8)

x ∈ [0, L
x

] ⊂ R, v ∈ V = R,

harge density ρ(t, x) =
∫
V

f dv ,

eletri �eld E (t, x) given by Poisson equation ∂
x

E = ρ− 1,

M (v) = 1√
2π

exp
(
− v

2

2

)
,

periodi onditions in x and initial onditions.

Multisale framework:

Knudsen number ε may be of order 1 or tend to 0 at the

drift-di�usion limit

∂
t

ρ− ∂
x

(∂
x

ρ− Eρ) = 0. (9)
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Not any more di�ult

Change the de�nition of F (ρ, g):

F (ρ, g) = v∂
x

ρM + v∂
x

g − ∂
x

〈vg〉M−vMEρ+ E∂
v

g .

Same reformulation of the miro-maro system with this F .

Evolve positions and veloity of partiles by onsidering

v

n+1

k

= v

n

k

+ ε(1 − e

−∆t/ε2)E n(xn
k

).

Solve Poisson equation ∂
x

E = ρ− 1 thanks to FFT or �nite

di�erenes.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Landau damping

Initial distribution funtion:

f (t = 0, x , v) =
1√
2π

exp(−v

2

2

)(1+α cos(kx)), x ∈ [0,
2π

k

], v ∈ R.

Miro-maro initializations:

ρ(t = 0, x) = 1+ α cos(kx) and g(t = 0, x , v) = 0.

Parameters: α = 0.05, k = 0.5.

Eletrial energy E(t) =
√∫

E (t, x)2dx .
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Evolution in time of the eletrial energy

Kineti and intermediate regimes

Left: ε = 1, N

x

= 128, N

p

= 10

5

, ∆t = 0.1.
Right: ε = 0.5, N

x

= 256, N

p

= 10

5

, ∆t = 0.01.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Evolution in time of the eletrial energy

Limit regime

Left: ε = 0.1, N
x

= 128, N

p

= 10

4

, ∆t = 0.001,
Right: ε = 10

−4

, N

x

= 128, N

p

= 100, ∆t = 0.01.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Two stream instability

Initial distribution funtion:

f (t = 0, x , v) =
v

2

√
2π

exp(−v

2

2

)(1+α cos(kx)), x ∈ [0,
2π

k

], v ∈ R.

Miro-maro initializations:

ρ(t = 0, x) = 1+ α cos(kx)

g (t = 0, x , v) =
1√
2π

(
v

2 − 1

)
exp

(
−v

2

2

)
(1+ α cos (kx)) .

Parameters: α = 0.05, k = 0.5.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Evolution in time of the eletrial energy

Kineti and intermediate regimes

Left: ε = 1, N

x

= 128, N

p

= 10

5

, ∆t = 0.1.
Right: ε = 0.5, N

x

= 256, N

p

= 10

5

, ∆t = 0.01.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Evolution in time of the eletrial energy

Limit regime

Left: ε = 0.1, N
x

= 128, N

p

= 10

4

, ∆t = 0.001.
Right: ε = 10

−4

, N

x

= 128, N

p

= 100, ∆t = 0.01.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Convergene - 2nd-order in time

Left: Landau damping ase.

Right: two stream instability ase.

Parameters: T = 0.1, N
x

= 16, N

p

= 100.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

How to onsider d

x

= d

v

= 2 or d

x

= d

v

= 3 testases?

In the radiative transport equation ase (no eletri �eld), use

Monte Carlo tehniques

16,17
for the partiles disretization.

Sine the ost will be smaller, we an onsider

multi-dimensional frameworks: (d
x

, d
v

) = (2, 2) or (3, 3).

∂
t

f +
1

ε
v · ∇

x

f =
1

ε2
(ρM − f ) (10)

x ∈ Ω ⊂ R
d

x

, v ∈ V = R
d

v

,

harge density ρ(t, x) =
∫
V

f (t, x, v)dv,

M(v) = 1

(2π)dv/2 exp
(
− |v|2

2

)
,

periodi onditions in x and initial onditions.

The asymptoti di�usion equation being

∂
t

ρ−∆
x

ρ = 0. (11)

16

Degond, Dimaro, Pareshi, IJNMF 2011.

17

Dimaro, Pareshi, Samaey, SISC 2018.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

How to automatially redue the number of partiles?

Same reformulation of the miro-maro system.

Consider that the number of partiles depends on t and that

the weights are onstant:

g

N

n (tn, x, v) =

N

n∑

k=1

ω
k

δ (x− x

n

k

) δ (v − v

n

k

) .

Initially, sample partiles orresponding to g (t = 0, x, v).

Solve transport part of the miro equation as previously

(motion equations).
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Solve soure part of the miro equation

g

n+1 = e

−∆t/ε2
g̃

n+(1−e

−∆t/ε2)ε
[
−v·∇

x

ρnM+∇
x

·〈vg̃〉nM
]
,

where g̃

n

is the funtion after the transport part,

with Monte Carlo tehniques:

with probability e

−∆t/ε2
, the distribution g

n+1

does not

hange,

with probability (1− e

−∆t/ε2), the distribution g

n+1

is replaed

by a new distribution given by ε
[
− v · ∇

x

ρnM +∇
x

· 〈vg̃〉nM
]
.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Solve soure part of the miro equation

g

n+1 = e

−∆t/ε2
g̃

n+(1−e

−∆t/ε2)ε
[
−v·∇

x

ρnM+∇
x

·〈vg̃〉nM
]
,

where g̃

n

is the funtion after the transport part,

with Monte Carlo tehniques:

keep e

−∆t/ε2
N

n

partiles unhanged (uniformly taken in eah

ell) and delete the others,

reate new partiles by sampling

(1− e

−∆t/ε2)ε
[
− v · ∇

x

ρnM +∇
x

· 〈vg̃〉nM
]
.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Time evolution of the number of partiles

Time evolution of the number of partiles in a d

x

= d

v

= 2 ase.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Slightly di�erent model with ε(x)

Position of partiles.

Left: partiles at T = 0. Middle: partiles at T = 1. Right: ε(x).
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Left: miro-maro Monte Carlo. Right: referene miro-maro grid.
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Our problem and objectives
A �rst micro-macro model

Its Particle-In-Cell / FV discretization
Some improvements/extensions

Second-order in time
Vlasov-BGK-Poisson model
Multi-dimensional testcases

Full dx = dv = 3 case

Integral of the distribution function in space
∫
x
f (T , x, v)dx

Left: ε = 1, right: ε = 0.5, T = 1.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Conlusions

Right asymptoti behaviour: AP shemes.

Possible to extend to a 2nd-order in time sheme.

Computational ost redues as the equilibrium is approahed.

Numerial noise smaller than a standard partile method on f .

Impliit treatment of the di�usion term.

Suitable for multi-dimensional testases.
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Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Future works

More 3D-3D testases, more physial relevane.

Boltzmann operator.

Add an eletromagneti �eld in the Monte Carlo / FV strategy.

A. Crestetto, N. Crouseilles, G. Dimaro, M. Lemou Miro-maro AP sheme for Boltzmann-BGK 46



Our problem and objetives

A �rst miro-maro model

Its Partile-In-Cell / FV disretization

Some improvements/extensions

Seond-order in time

Vlasov-BGK-Poisson model

Multi-dimensional testases

Thank you for your attention!
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