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Binary elastic collisions

v

v∗

v ′

v ′∗

v + v∗ = v ′ + v ′∗︸ ︷︷ ︸
conservation of momentum

|v |2 + |v∗|2 = |v ′|2 + |v ′∗|2︸ ︷︷ ︸
conservation of kinetic energy

I We say that a quadruple of velocities (v , v∗, v ′, v ′∗) ∈ (Rd)4 is
admissible if these two equalities are satisfied.
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The Boltzmann equation

Assuming we have a large number of (identical) particles, the whole
system can be described by the density f = f (t, x , v) of particles, de-
pending on time t ∈ R, position x ∈ Rd , and velocity v ∈ Rd .

The evolution of this density is prescribed by the Boltzmann equation:

∂f
∂t + v · ∇x f = Q(f ).

Q(f )(v) =
∫

all admissible
collision velocities

B(v , v∗, v ′, v ′∗)
(
f (v ′)f (v ′∗)− f (v)f (v∗)

)
dv∗dv ′dv ′∗.

The admissible post-collisional velocities can be parametrized:
v ′ = v + v∗

2 + |v − v∗|
2 σ

v ′∗ = v + v∗
2 − |v − v∗|

2 σ

σ ∈ Sd−1.
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Long time behaviour?

Boltzmann’s H theorem: the entropy H(f ) =
∫

f ln f dxdv is
non-increasing

d
dt H(f ) = −

∫
D(f )dx ≤ 0,

and the entropy dissipation D(f ) vanishes if and only if

ln f (v) + ln f (v∗) = ln f (v ′) + ln f (v ′∗)

for all admissible collision velocities (v , v∗, v ′, v ′∗).

What are the functions ϕ = ϕ(v) such that{
v + v∗ = v ′ + v ′∗

|v |2 + |v∗|2 = |v ′|2 + |v ′∗|2

}
=⇒ ϕ(v) + ϕ(v∗) = ϕ(v ′) + ϕ(v ′∗) ?
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Collision invariants

For any function ϕ = ϕ(v), we have∫
Q(f )(v)ϕ(v)dv =− 1

4

∫
all admissible

collision velocities

B
(
f (v ′)f (v ′∗)− f (v)f (v∗)

)
×
(
ϕ(v ′) + ϕ(v ′∗)− ϕ(v)− ϕ(v∗)

)
dvdv∗dv ′dv ′∗.

Therefore, if ϕ = ϕ(v) is such that{
v + v∗ = v ′ + v ′∗

|v |2 + |v∗|2 = |v ′|2 + |v ′∗|2

}
=⇒ ϕ(v) + ϕ(v∗) = ϕ(v ′) + ϕ(v ′∗),

then
∫

Q(f )ϕ dv = 0 and hence
∫

f ϕ dxdv is a conserved quantity.
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Kernel of the linearized operator

If we want to study a perturbation of the Maxwellian equilibrium M, of
the form f = M(1 + ϕ), we can use the linearized collision operator:

Lϕ(v) =
∫
Rd

∫
Sd−1

BM(v∗)
(
ϕ(v ′) + ϕ(v ′∗)− ϕ(v)− ϕ(v∗)

)
dσdv∗.

In particular, we have∫
Rd

Lϕ(v)ϕ(v)M(v)dv = −1
4

∫
Rd

∫
Rd

∫
Sd−1

BM(v∗)M(v)

×
(
ϕ(v ′) + ϕ(v ′∗)− ϕ(v)− ϕ(v∗)

)2 dσdv∗dv .
Therefore, the collision invariants also characterize the kernel of the li-
nearized operator.
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Main question

(not quite)

Find all the functions ϕ (in some function space) satisfying

ϕ(v) + ϕ(v∗) = ϕ(v ′) + ϕ(v ′∗),

for all (or almost all) (v , v∗, v ′, v ′∗) such that

v + v∗ = v ′ + v ′∗ and |v |2 + |v∗|2 = |v ′|2 + |v ′∗|2.

I Answer: ϕ must be a linear combination of 1, vi and |v |2.

Assuming ϕ is twice differentiable [Boltzmann 1875].
Assuming ϕ is continuous [Gronwall 1915; Carleman 1957].
Assuming ϕ is L1

loc [Arkeryd and Cercignani 1990].
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Main question

Given ω : Rd → R, find all the functions ϕ ∈ L1
loc satisfying

ϕ(v) + ϕ(v∗) = ϕ(v ′) + ϕ(v ′∗),

for almost all (v , v∗, v ′, v ′∗) such that

v + v∗ = v ′ + v ′∗ and ω(v) + ω(v∗) = ω(v ′) + ω(v ′∗).

I Precise goal: find (minimal) conditions on ω such that ϕ must be a
linear combination of 1, vi and ω(v).

I Main difficulties: We do not want to assume too much smoothness on
ω, and even less on ϕ. We do not have an explicit parameterization of
the set of admissible collision velocities!
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Relativistic and quantum Boltzmann equations
If one consider relativistic particles, the energy is then given by

ω(p) =
√
1 + |p|2.

Besides, if quantum effects are taken into account, the collision operator
has to be adjusted

Qε(f )(p) =
∫
Rd

∫
Rd

∫
Rd

B
(
f ′f ′∗(1 + εf )(1 + εf∗)− ff∗(1 + εf ′)(1 + εf ′∗)

)
× δ{p+p∗=p′+p′∗}δ{ω(p)+ω(p∗)=ω(p′)+ω(p′∗)}dp∗dp

′dp′∗,

where ε =


+1 for Bose-Einstein statistics,
−1 for Fermi-Dirac statistics,
0 in the non quantum case.

In all those cases, the collision invariants play an important role, and
are related to the thermodynamic equilibria via

ϕ(p) = ln
( f (p)
1 + εf (p)

)
.
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Besides, if quantum effects are taken into account, the collision operator
has to be adjusted

Qε(f )(p) =
∫
Rd

∫
Rd

∫
Rd

B
(
f ′f ′∗(1 + εf )(1 + εf∗)− ff∗(1 + εf ′)(1 + εf ′∗)

)
× δ{p+p∗=p′+p′∗}δ{ω(p)+ω(p∗)=ω(p′)+ω(p′∗)}dp∗dp

′dp′∗,

where ε =


+1 for Bose-Einstein statistics,
−1 for Fermi-Dirac statistics,
0 in the non quantum case.

In all those cases, the collision invariants play an important role, and
are related to the thermodynamic equilibria via

ϕ(p) = ln
( f (p)
1 + εf (p)

)
.
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A kinetic equation for weakly interacting waves
Kinetic equations are also used in the theory of weak turbulence.

The
collision operator used there is very similar to the standard Boltzmann
collision operator for gases:

Qwaves(f )(k) =
∫
Rd

∫
Rd

∫
Rd

B
(
f ′f ′∗(f + f∗)− ff∗(f ′ + f ′∗)

)
× δ{k+k∗=k′+k′∗}δ{ω(k)+ω(k∗)=ω(k′)+ω(k′∗)}dk∗dk

′dk ′∗,
where k denotes the wave number, ω the dispersion relation, and f (k)
the mean square amplitude of waves having a wave number k.
This equation also enjoys an H-theorem, with H(f ) =

∫
ln f . The col-

lision invariants are again related to the thermodynamic equilibria, this
time via

ϕ(k) = 1
f (k) .

For gravity waves, the dispersion law is of the form

ω(k) =
√
|k|.
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A brief (and non-exhaustive) literature review

The relativistic Boltzmann equation has been studied quite extensively
[Cercignani and Kremer 2002; Escobedo, Mischler and Valle 2003].

The kinetic equations appearing in the theory of weak turbulence have
been mostly studied in the physics literature [Zakharov, L’vov, Falkovich
1992]. More recently, some attempt have been made to rigorously derive
these kinetic equations [Lukkarinen and Spohn 2011], and the Cauchy
problem has also been studied [Germain, Ionescu and Tran 2017].
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Main question

Given ω : Rd → R, find all the functions ϕ ∈ L1
loc satisfying

ϕ(v) + ϕ(v∗) = ϕ(v ′) + ϕ(v ′∗),

for almost all (v , v∗, v ′, v ′∗) such that

v + v∗ = v ′ + v ′∗ and ω(v) + ω(v∗) = ω(v ′) + ω(v ′∗).

I Precise goal: find (minimal) conditions on ω such that ϕ must be a
linear combination of 1, vi and ω(v).

I Main difficulties: We do not want to assume too much smoothness on
ω, and even less on ϕ. We do not have an explicit parameterization of
the set of admissible collision velocities!
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Smooth case [B. and Desvillettes 2018]

Let ω ∈ C2(Rd
∗ ,R), d ∈ {2, 3}.

Main hypothesis: Assume there exists i 6= j ∈ {1, . . . , d}, such that

{1, ∂iω, ∂jω} are linearly independant.

I If ϕ ∈ C1(Rd
∗ ,R) satisfies

ϕ(v) + ϕ(v∗) = ϕ(v ′) + ϕ(v ′∗),

for all (v , v∗, v ′, v ′∗) such that

v + v∗ = v ′ + v ′∗ and ω(v) + ω(v∗) = ω(v ′) + ω(v ′∗),

then,
ϕ(v) = a + b · v + c ω(v),

for some constants a, c ∈ R and b ∈ Rd .
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L1
loc case [B. and Desvillettes 2018]

Let ω ∈ C2(Rd
∗ ,R), d ∈ {2, 3}.

Main hypothesis: Assume there exists i 6= j ∈ {1, . . . , d}, such that

{1, ∂iω, ∂jω} are linearly independant.

Extra hypothesis: Assume the boundary of {(v , v∗) | ∇ω(v) 6= ∇ω(v∗)}
is of measure zero.

I If ϕ ∈ L1
loc satisfies

ϕ(v) + ϕ(v∗) = ϕ(v ′) + ϕ(v ′∗),

for almost all (v , v∗, v ′, v ′∗) such that

v + v∗ = v ′ + v ′∗ and ω(v) + ω(v∗) = ω(v ′) + ω(v ′∗),

then,
ϕ(v) = a + b · v + c ω(v),

for some constants a, c ∈ R and b ∈ Rd .
Maxime Breden Collision invariants of kinetic equations HIM, June 2019



Parameterization of the admissible collision velocities

The admissible collision velocities can be reduced to the (v , v∗, z) s.t.

ω(v) + ω(v∗) = ω(v − z) + ω(v∗ + z),

where v ′ = v − z and v ′∗ = v∗ + z .

If ∇ω(v) 6= ∇ω(v∗), then locally, the set of admissible collision velocities
can be parametrized by:

z = γ(v , v∗, σ), σ ∈ Rd−1,

with γ(v , v∗, 0) = 0 and rank (Dσγ(v , v∗, 0)) = d − 1.

I In the L1
loc case, we assume that, for almost all v , v∗ ∈ Rd

∗ such that
∇ω(v) 6= ∇ω(v∗), and almost all σ ∈ Rd−1 in a neighbourhood of 0,

ϕ(v) + ϕ(v∗) = ϕ(v − γ(v , v∗, σ)) + ϕ(v∗ + γ(v , v∗, σ)).
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Step 1 of the proof

We want to show that (∇ϕ(v)−∇ϕ(v∗))× (∇ω(v)−∇ω(v∗)) = 0.

Starting from

ϕ(v) + ϕ(v∗) = ϕ(v − γ(v , v∗, σ)) + ϕ(v∗ + γ(v , v∗, σ)),

we get
Dσγ(v , v∗, 0)ᵀ (∇ϕ(v)−∇ϕ(v∗)) = 0.

Similarly,
Dσγ(v , v∗, 0)ᵀ (∇ω(v)−∇ω(v∗)) = 0.

Since Dσγ(v , v∗, 0) is of maximal rank, ∇ϕ(v)−∇ϕ(v∗) and ∇ω(v)−
∇ω(v∗) must be colinear.

This only holds when ∇ω(v) 6= ∇ω(v∗), but when ∇ω(v) = ∇ω(v∗) the
statement is trivial.

All of this can be done in the weak sense.
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Step 2 of the proof
In coordinates, we have just shown that
(∂iϕ(v)− ∂iϕ(v∗)) (∂jω(v)− ∂jω(v∗)) =

(∂jϕ(v)− ∂jϕ(v∗)) (∂iω(v)− ∂iω(v∗)) . (?)

The main idea, based on [Desvillettes 2015], is then to test (?) against
well chosen functions:∫

(?) dv∗,
∫

(?) ∂iω(v∗)dv∗,
∫

(?) ∂jω(v∗)dv∗.

The resulting equalities can be rewritten as a linear system Ax = y ,
where

A =


∫
dv∗

∫
∂iω(v∗)dv∗

∫
∂jω(v∗)dv∗∫

∂iω(v∗)dv∗
∫

(∂iω(v∗))2 dv∗
∫
∂iω(v∗)∂jω(v∗)dv∗∫

∂jω(v∗)dv∗
∫
∂iω(v∗)∂jω(v∗)dv∗

∫
(∂jω(v∗))2 dv∗
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Step 2 of the proof

(∂iϕ(v)− ∂iϕ(v∗)) (∂jω(v)− ∂jω(v∗)) =
(∂jϕ(v)− ∂jϕ(v∗)) (∂iω(v)− ∂iω(v∗)) . (?)

Since 1, ∂iω and ∂jω are linearly independent, the Gram matrix A is
invertible, and x = A−1y , which yields{

∂iϕ(v) = bi + ci∂iω(v) + di∂jω(v)
∂jϕ(v) = bj + cj∂jω(v) + dj∂iω(v)

Plugging this back in (?), and using once more the linear independence
of 1, ∂iω and ∂jω, we get

ci = cj and di = 0 = dj .

Therefore ∇ϕ(v) = b + c∇ω(v) and thus

ϕ(v) = a + b · v + cω(v).
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Some counterexamples

In dimension 1 (not covered by our results), there are many functions ω
for which the set of admissible collision velocities is trivial. For instance,
if ω is strictly concave or convex, then the only (v , v∗, v ′, v ′∗) satisfying

v + v∗ = v ′ + v ′∗ and ω(v) + ω(v∗) = ω(v ′) + ω(v ′∗)
are of the form (v , v∗, v , v∗) and (v , v∗, v∗, v), and thus

ϕ(v) + ϕ(v∗) = ϕ(v ′) + ϕ(v ′∗)
holds for any function ϕ.

In dimension d = 2, if 1, ∂iω and ∂jω are NOT linearly independent,
then up to a change of coordinate ω is of the form

ω(v) = g(v1) + βv2.

Therefore, as soon as the set of admissible collision velocities is trivial
for g , any function ϕ of the form

ϕ(v) = h(v1) + bv2

is a collision invariant.
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Back to the equilibria
When 1, ∂iω and ∂jω are linearly independent, the collision invariant must
be of the form

ϕ(v) = a + b · v + cω(v).

However, these collision invariant give rise to different equilibria.

For the Boltzmann equation for particles (classical or quantum), the
relation is given by

feq(v) = eϕ(v)

1− εeϕ(v) .

I When ε = 0 (non-quantum case), we recover Maxwellian distributions.
I When ε = 1, we recover Bose-Einstein distributions.
I When ε = −1, we recover Fermi-Dirac distributions.

For the Boltzmann equation for waves, the relation is given by

feq(v) = 1
ϕ(v) .
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3-waves interactions

In the example discussed up to now for kinetic equations for waves, we
only studied the so-called 4-waves interactions, characterized by

v + v∗ = v ′ + v ′∗ and ω(v) + ω(v∗) = ω(v ′) + ω(v ′∗).

However, in the context of weakly interacting waves, the most important
effect is given by 3-waves interactions, characterized by

v + v∗ = v ′ and ω(v) + ω(v∗) = ω(v ′).

For some dispersion relations (e.g. ω(v) =
√
|v |), such interactions are

not possible, which is why we then consider the 4-waves kinetic equation.

For other dispersion relations, for example ω(v) = |v |3/2 corresponding
to capillary waves, these 3-waves interactions do occur, and they lead to
a slightly different kinetic equation.
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The 3-waves collision kernel

The collision operator for these 3-waves interaction is given by

Q̃3(f )(v) =
∫ (

R(v , v∗, v ′)− R(v∗, v , v ′)− R(v ′, v , v∗)
)
dv∗dv ′,

where

R(v , v∗, v ′) = B(v , v∗, v ′)
(
f (v∗)f (v ′)− f (v)(f (v∗) + f (v ′))

)
× δ{v=v∗+v ′}δ{ω(v)=ω(v∗)+ω(v ′)}.

In this situation, the collision invariants must satisfy

ϕ(v) + ϕ(v∗) = ϕ(v ′),

for all (v , v∗, v ′) such that

v + v∗ = v ′ and ω(v) + ω(v∗) = ω(v ′).
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Partial results [B. and Desvillettes 2018]

Let ω ∈ C1(Rd
∗ ,R), d ∈ {2, 3}.

Main hypotheses: Assume ω(0) = 0, ∇ω(0) = 0, ω(v) > 0 for all
v 6= 0 and ∇ω(v) 6= 0 for all v 6= 0. Assume also that, for all a ∈ R, the
set ω−1 ({a}) is connected.

I If ϕ ∈ C1(Rd
∗ ,R) satisfies

ϕ(v) + ϕ(v∗) = ϕ(v ′),

for all (v , v∗, v ′) such that

v + v∗ = v ′ and ω(v) + ω(v∗) = ω(v ′),

then,
ϕ(v) = b · v + c ω(v),

for some constants b ∈ Rd and c ∈ R.
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Sketch of the proof

Consider ϕ̃(v) = ϕ(v)−∇ϕ(0) · v , so that ∇ϕ̃(0) = 0.

Similarly to the 4-waves case, consider the manifold of admissible collision
velocities, and show that

∇ω(v) // ∇ϕ̃(v) .

Deduce that ϕ̃ is constant on the level sets of ω, therefore there is a
function γ : R→ R such that

ϕ̃(v) = γ(ω(v)).

Conclude by showing that γ is in fact linear.
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Comments, counterexamples and open questions

There is one less invariant (the mass) than in the 4-waves case.

The result we proved is only valid for smooth collision invariants.
Although the assumptions on ω are more stringent than in the 4-waves
case, they cover the relevant dispersion law ω(v) = |v |3/2.
Very interestingly, there exists another physically relevant dispersion law

ω(v) = v1
1 + |v |2 ,

corresponding to Rossby waves (also called planetary waves), which ad-
mits an extra collision invariant [Balk 1991]:

ϕ(v) = arctan
(
v1
√
3 + v2
|v |2

)
+ arctan

(
v1
√
3− v2
|v |2

)
.

This example violates several assumptions of our theorem at once. The-
refore it is not clear which are the properties of ω (or ϕ) allowing for this
extra invariant to exist!
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This example violates several assumptions of our theorem at once. The-
refore it is not clear which are the properties of ω (or ϕ) allowing for this
extra invariant to exist!
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