On the collision invariants of Boltzmann-like kinetic equations

Maxime Breden Technische Universität München

Joint work with Laurent Desvillettes

Qualitative behaviour of kinetic equations and related problems: numerical and theoretical aspects, HIM

June 7th, 2019

1 Introduction

2 Examples of Boltzmann-like equations with different energies

3 Main results

4 Related questions

Outline

1 Introduction

- Background on the Boltzmann equation
- Finding all collision invariants

2 Examples of Boltzmann-like equations with different energies

3 Main results

4 Related questions

Binary elastic collisions

Binary elastic collisions

Binary elastic collisions

admissible if these two equalities are satisfied.

• Assuming we have a large number of (identical) particles, the whole system can be described by the density f = f(t, x, v) of particles, depending on time $t \in \mathbb{R}$, position $x \in \mathbb{R}^d$, and velocity $v \in \mathbb{R}^d$.

- Assuming we have a large number of (identical) particles, the whole system can be described by the density f = f(t, x, v) of particles, depending on time $t \in \mathbb{R}$, position $x \in \mathbb{R}^d$, and velocity $v \in \mathbb{R}^d$.
- The evolution of this density is prescribed by the Boltzmann equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f).$$

- Assuming we have a large number of (identical) particles, the whole system can be described by the density f = f(t, x, v) of particles, depending on time $t \in \mathbb{R}$, position $x \in \mathbb{R}^d$, and velocity $v \in \mathbb{R}^d$.
- The evolution of this density is prescribed by the Boltzmann equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f).$$

$$Q(f)(v) = \int B(v, v_*, v', v'_*) \left(f(v') f(v'_*) - f(v) f(v_*) \right) dv_* dv' dv'_*.$$

all admissible collision velocities

- Assuming we have a large number of (identical) particles, the whole system can be described by the density f = f(t, x, v) of particles, depending on time $t \in \mathbb{R}$, position $x \in \mathbb{R}^d$, and velocity $v \in \mathbb{R}^d$.
- The evolution of this density is prescribed by the Boltzmann equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f).$$

$$Q(f)(v) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} B(v, v_*, v', v'_*) \left(f(v') f(v'_*) - f(v) f(v_*) \right) \\ \times \delta_{\{v+v_*=v'+v'_*\}} \delta_{\{|v|^2+|v_*|^2=|v'|^2+|v'_*|^2\}} dv_* dv' dv'_*.$$

- Assuming we have a large number of (identical) particles, the whole system can be described by the density f = f(t, x, v) of particles, depending on time $t \in \mathbb{R}$, position $x \in \mathbb{R}^d$, and velocity $v \in \mathbb{R}^d$.
- The evolution of this density is prescribed by the Boltzmann equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f).$$

$$Q(f)(v) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} B(v, v_*, v', v'_*) \left(f(v') f(v'_*) - f(v) f(v_*) \right) \\ \times \delta_{\{v+v_*=v'+v'_*\}} \delta_{\{|v|^2+|v_*|^2=|v'|^2+|v'_*|^2\}} dv_* dv' dv'_*.$$

• The admissible post-collisional velocities can be parametrized:

$$\begin{cases} v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma \\ v'_* = \frac{v + v_*}{2} - \frac{|v - v_*|}{2}\sigma \end{cases} \qquad \sigma \in \mathbb{S}^{d-1}.$$

- Assuming we have a large number of (identical) particles, the whole system can be described by the density f = f(t, x, v) of particles, depending on time $t \in \mathbb{R}$, position $x \in \mathbb{R}^d$, and velocity $v \in \mathbb{R}^d$.
- The evolution of this density is prescribed by the Boltzmann equation:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = Q(f).$$

$$Q(f)(v) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} B(v - v_*, \sigma) \left(f(v') f(v'_*) - f(v) f(v_*) \right) d\sigma dv_*.$$

• The admissible post-collisional velocities can be parametrized:

$$\begin{cases} v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma \\ v'_* = \frac{v + v_*}{2} - \frac{|v - v_*|}{2}\sigma \end{cases} \quad \sigma \in \mathbb{S}^{d-1}.$$

• Boltzmann's H theorem: the entropy $H(f) = \int f \ln f \, dx dv$ is non-increasing

$$\frac{d}{dt}H(f)=-\int D(f)dx\leq 0,$$

• Boltzmann's H theorem: the entropy $H(f) = \int f \ln f \, dx dv$ is non-increasing

$$\frac{d}{dt}H(f)=-\int D(f)dx\leq 0,$$

and the entropy dissipation D(f) vanishes if and only if

$$f(v)f(v_*)=f(v')f(v'_*)$$

for all admissible collision velocities (v, v_*, v', v'_*) .

• Boltzmann's H theorem: the entropy $H(f) = \int f \ln f \, dx dv$ is non-increasing

$$\frac{d}{dt}H(f)=-\int D(f)dx\leq 0,$$

and the entropy dissipation D(f) vanishes if and only if

$$\ln f(v) + \ln f(v_*) = \ln f(v') + \ln f(v'_*)$$

for all admissible collision velocities (v, v_*, v', v'_*) .

• Boltzmann's H theorem: the entropy $H(f) = \int f \ln f \, dx dv$ is non-increasing

$$\frac{d}{dt}H(f)=-\int D(f)dx\leq 0,$$

and the entropy dissipation D(f) vanishes if and only if

$$\ln f(v) + \ln f(v_*) = \ln f(v') + \ln f(v'_*)$$

for all admissible collision velocities (v, v_*, v', v'_*) .

• What are the functions $\varphi = \varphi(v)$ such that

$$\begin{cases} \mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_* \\ |\mathbf{v}|^2 + |\mathbf{v}_*|^2 = |\mathbf{v}'|^2 + |\mathbf{v}'_*|^2 \end{cases} \implies \varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v}') + \varphi(\mathbf{v}'_*) ?$$

• For any function $\varphi = \varphi(v)$, we have

$$\int Q(f)(v)\varphi(v)dv = -\frac{1}{4} \int B\left(f(v')f(v'_*) - f(v)f(v_*)\right)$$

all admissible
collision velocities
$$\times \left(\varphi(v') + \varphi(v'_*) - \varphi(v) - \varphi(v_*)\right) dvdv_*dv'dv'_*.$$

• For any function $\varphi = \varphi(v)$, we have

$$\int Q(f)(v)\varphi(v)dv = -\frac{1}{4} \int B\left(f(v')f(v'_*) - f(v)f(v_*)\right)$$

all admissible
collision velocities
$$\times \left(\varphi(v') + \varphi(v'_*) - \varphi(v) - \varphi(v_*)\right) dvdv_*dv'dv'_*.$$

• For any function $\varphi = \varphi(v)$, we have

$$\int Q(f)(v)\varphi(v)dv = -\frac{1}{4} \int B\left(f(v')f(v'_*) - f(v)f(v_*)\right)$$

$$\stackrel{\text{all admissible}}{\overset{\text{collision velocities}}{\times (\varphi(v') + \varphi(v'_*) - \varphi(v) - \varphi(v_*))} dvdv_*dv'dv'_*.$$

• Therefore, if $\varphi = \varphi(\mathbf{v})$ is such that

$$\begin{cases} v + v_* = v' + v'_* \\ |v|^2 + |v_*|^2 = |v'|^2 + |v'_*|^2 \end{cases} \implies \varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$$

then $\int Q(f)\varphi \, dv = 0$ and hence $\int f\varphi \, dx dv$ is a conserved quantity.

• For any function $\varphi = \varphi(v)$, we have

$$\int Q(f)(v)\varphi(v)dv = -\frac{1}{4} \int B\left(f(v')f(v'_*) - f(v)f(v_*)\right)$$

$$\stackrel{\text{all admissible}}{\overset{\text{collision velocities}}{\times (\varphi(v') + \varphi(v'_*) - \varphi(v) - \varphi(v_*))} dvdv_*dv'dv'_*.$$

• Therefore, if $\varphi = \varphi(\mathbf{v})$ is such that

$$\begin{cases} v + v_* = v' + v'_* \\ |v|^2 + |v_*|^2 = |v'|^2 + |v'_*|^2 \end{cases} \implies \varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$$

then $\int Q(f)\varphi \, dv = 0$ and hence $\int f\varphi \, dx dv$ is a conserved quantity.

 If we want to study a perturbation of the Maxwellian equilibrium *M*, of the form *f* = *M*(1 + φ), we can use the linearized collision operator:

$$L\varphi(\mathbf{v}) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} B M(\mathbf{v}_*) \left(\varphi(\mathbf{v}') + \varphi(\mathbf{v}'_*) - \varphi(\mathbf{v}) - \varphi(\mathbf{v}_*)\right) d\sigma d\mathbf{v}_*.$$

 If we want to study a perturbation of the Maxwellian equilibrium *M*, of the form *f* = *M*(1 + φ), we can use the linearized collision operator:

$$L\varphi(\mathbf{v}) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} B M(\mathbf{v}_*) \left(\varphi(\mathbf{v}') + \varphi(\mathbf{v}'_*) - \varphi(\mathbf{v}) - \varphi(\mathbf{v}_*)\right) d\sigma d\mathbf{v}_*.$$

• In particular, we have

$$\int_{\mathbb{R}^d} L\varphi(v)\varphi(v)M(v)dv = -\frac{1}{4} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} B M(v_*)M(v) \times \left(\varphi(v') + \varphi(v'_*) - \varphi(v) - \varphi(v_*)\right)^2 d\sigma dv_* dv.$$

 If we want to study a perturbation of the Maxwellian equilibrium *M*, of the form *f* = *M*(1 + φ), we can use the linearized collision operator:

$$L\varphi(\mathbf{v}) = \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} B M(\mathbf{v}_*) \left(\varphi(\mathbf{v}') + \varphi(\mathbf{v}'_*) - \varphi(\mathbf{v}) - \varphi(\mathbf{v}_*)\right) d\sigma d\mathbf{v}_*.$$

• In particular, we have

$$\int_{\mathbb{R}^d} L\varphi(v)\varphi(v)M(v)dv = -\frac{1}{4}\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} BM(v_*)M(v) \times \left(\varphi(v') + \varphi(v'_*) - \varphi(v) - \varphi(v_*)\right)^2 d\sigma dv_* dv.$$

• Therefore, the collision invariants also characterize the kernel of the linearized operator.

Find all the functions φ (in some function space) satisfying $\varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$ for all (or almost all) (v, v_*, v', v'_*) such that $v + v_* = v' + v'_*$ and $|v|^2 + |v_*|^2 = |v'|^2 + |v'_*|^2.$ Find all the functions φ (in some function space) satisfying $\varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$ for all (or almost all) (v, v_*, v', v'_*) such that $v + v_* = v' + v'_*$ and $|v|^2 + |v_*|^2 = |v'|^2 + |v'_*|^2.$

▶ Answer: φ must be a linear combination of 1, v_i and $|v|^2$.

Find all the functions φ (in some function space) satisfying $\varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$ for all (or almost all) (v, v_*, v', v'_*) such that $v + v_* = v' + v'_*$ and $|v|^2 + |v_*|^2 = |v'|^2 + |v'_*|^2.$

▶ Answer: φ must be a linear combination of 1, v_i and $|v|^2$.

- Assuming φ is twice differentiable [Boltzmann 1875].
- Assuming φ is continuous [Gronwall 1915; Carleman 1957].
- Assuming φ is L^1_{loc} [Arkeryd and Cercignani 1990].

Given $\omega : \mathbb{R}^d \to \mathbb{R}$, find all the functions $\varphi \in L^1_{loc}$ satisfying $\varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$ for almost all (v, v_*, v', v'_*) such that $v + v_* = v' + v'_*$ and $\omega(v) + \omega(v_*) = \omega(v') + \omega(v'_*).$

Given $\omega : \mathbb{R}^d \to \mathbb{R}$, find all the functions $\varphi \in L^1_{loc}$ satisfying $\varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$ for almost all (v, v_*, v', v'_*) such that $v + v_* = v' + v'_*$ and $\omega(v) + \omega(v_*) = \omega(v') + \omega(v'_*).$

Precise goal: find (minimal) conditions on ω such that φ must be a linear combination of 1, v_i and ω(v).

Given $\omega : \mathbb{R}^d \to \mathbb{R}$, find all the functions $\varphi \in L^1_{loc}$ satisfying $\varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$ for almost all (v, v_*, v', v'_*) such that $v + v_* = v' + v'_*$ and $\omega(v) + \omega(v_*) = \omega(v') + \omega(v'_*).$

Precise goal: find (minimal) conditions on ω such that φ must be a linear combination of 1, v_i and ω(v).

Main difficulties: We do not want to assume too much smoothness on ω, and even less on φ. We do not have an explicit parameterization of the set of admissible collision velocities!

Introduction

2 Examples of Boltzmann-like equations with different energies

3 Main results

4 Related questions

Relativistic and quantum Boltzmann equations

• If one consider relativistic particles, the energy is then given by

$$\omega(\mathbf{p}) = \sqrt{1+|\mathbf{p}|^2}.$$

Relativistic and quantum Boltzmann equations

• If one consider relativistic particles, the energy is then given by

$$\omega(p) = \sqrt{1+|p|^2}.$$

 Besides, if quantum effects are taken into account, the collision operator has to be adjusted

$$egin{aligned} Q_arepsilon(f)(p) &= \int \limits_{\mathbb{R}^d} \int \limits_{\mathbb{R}^d} B\left(f'f'_*(1+arepsilon f)(1+arepsilon f_*) - ff_*(1+arepsilon f')(1+arepsilon f'_*)
ight) \ & imes \delta_{\{p+p_*=p'+p'_*\}}\delta_{\{\omega(p)+\omega(p_*)=\omega(p')+\omega(p'_*)\}}dp_*dp'dp'_*, \end{aligned}$$
Relativistic and quantum Boltzmann equations

• If one consider relativistic particles, the energy is then given by

$$\omega(p) = \sqrt{1+|p|^2}.$$

• Besides, if quantum effects are taken into account, the collision operator has to be adjusted

$$Q_{\varepsilon}(f)(p) = \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} B\left(f'f'_{*}(1+\varepsilon f)(1+\varepsilon f_{*}) - ff_{*}(1+\varepsilon f')(1+\varepsilon f'_{*})\right)$$
$$\times \delta_{\{p+p_{*}=p'+p'_{*}\}} \delta_{\{\omega(p)+\omega(p_{*})=\omega(p')+\omega(p'_{*})\}} dp_{*} dp' dp'_{*},$$
$$(+1 \quad \text{for Bese Einstein statistics})$$

where
$$\varepsilon = \begin{cases} +1 & \text{for Bose-Einstein statistics,} \\ -1 & \text{for Fermi-Dirac statistics,} \\ 0 & \text{in the non quantum case.} \end{cases}$$

Relativistic and quantum Boltzmann equations

• If one consider relativistic particles, the energy is then given by

$$\omega(p) = \sqrt{1+|p|^2}.$$

 Besides, if quantum effects are taken into account, the collision operator has to be adjusted

$$Q_{\varepsilon}(f)(p) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} B\left(f'f'_*(1+\varepsilon f)(1+\varepsilon f_*) - ff_*(1+\varepsilon f')(1+\varepsilon f'_*)\right)$$

$$\times \delta_{\{p+p_*=p'+p'_*\}}\delta_{\{\omega(p)+\omega(p_*)=\omega(p')+\omega(p'_*)\}}dp_*dp'_dp'_*,$$

where
$$\varepsilon = \begin{cases} +1 & \text{for Bose-Einstein statistics,} \\ -1 & \text{for Fermi-Dirac statistics,} \\ 0 & \text{in the non quantum case.} \end{cases}$$

• In all those cases, the collision invariants play an important role, and are related to the thermodynamic equilibria via

$$\varphi(p) = \ln\left(\frac{f(p)}{1 + \varepsilon f(p)}\right).$$

• Kinetic equations are also used in the theory of weak turbulence.

• Kinetic equations are also used in the theory of *weak turbulence*. The collision operator used there is very similar to the standard Boltzmann collision operator for gases:

$$\begin{aligned} Q_{\mathsf{waves}}(f)(k) &= \int \int \int \int B\left(f'f'_*(f+f_*) - ff_*(f'+f'_*)\right) \\ &\times \delta_{\{k+k_*=k'+k'_*\}} \delta_{\{\omega(k)+\omega(k_*)=\omega(k')+\omega(k'_*)\}} dk_* dk' dk'_*, \end{aligned}$$

where k denotes the wave number, ω the dispersion relation, and f(k) the mean square amplitude of waves having a wave number k.

• Kinetic equations are also used in the theory of *weak turbulence*. The collision operator used there is very similar to the standard Boltzmann collision operator for gases:

$$\begin{aligned} Q_{\mathsf{waves}}(f)(k) &= \int \int \int \int B\left(f'f'_*(f+f_*) - ff_*(f'+f'_*)\right) \\ &\times \delta_{\{k+k_*=k'+k'_*\}} \delta_{\{\omega(k)+\omega(k_*)=\omega(k')+\omega(k'_*)\}} dk_* dk' dk'_*, \end{aligned}$$

where k denotes the wave number, ω the dispersion relation, and f(k) the mean square amplitude of waves having a wave number k.

• This equation also enjoys an H-theorem, with $H(f) = \int \ln f$. The collision invariants are again related to the thermodynamic equilibria, this time via

$$\varphi(k)=\frac{1}{f(k)}.$$

• Kinetic equations are also used in the theory of *weak turbulence*. The collision operator used there is very similar to the standard Boltzmann collision operator for gases:

$$\begin{aligned} Q_{\mathsf{waves}}(f)(k) &= \int \int \int \int B\left(f'f'_*(f+f_*) - ff_*(f'+f'_*)\right) \\ &\times \delta_{\{k+k_*=k'+k'_*\}} \delta_{\{\omega(k)+\omega(k_*)=\omega(k')+\omega(k'_*)\}} dk_* dk' dk'_*, \end{aligned}$$

where k denotes the wave number, ω the dispersion relation, and f(k) the mean square amplitude of waves having a wave number k.

• This equation also enjoys an H-theorem, with $H(f) = \int \ln f$. The collision invariants are again related to the thermodynamic equilibria, this time via

$$\varphi(k)=\frac{1}{f(k)}.$$

• For gravity waves, the dispersion law is of the form

$$\omega(k) = \sqrt{|k|}.$$

- The relativistic Boltzmann equation has been studied quite extensively [Cercignani and Kremer 2002; Escobedo, Mischler and Valle 2003].
- The kinetic equations appearing in the theory of weak turbulence have been mostly studied in the physics literature [Zakharov, L'vov, Falkovich 1992]. More recently, some attempt have been made to rigorously derive these kinetic equations [Lukkarinen and Spohn 2011], and the Cauchy problem has also been studied [Germain, Ionescu and Tran 2017].

Introduction

3 Main results

- Statements
- Proof and comments

4 Related questions

Main question

Given $\omega : \mathbb{R}^d \to \mathbb{R}$, find all the functions $\varphi \in L^1_{loc}$ satisfying $\varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$ for almost all (v, v_*, v', v'_*) such that $v + v_* = v' + v'_*$ and $\omega(v) + \omega(v_*) = \omega(v') + \omega(v'_*).$

Main question

Given $\omega : \mathbb{R}^d \to \mathbb{R}$, find all the functions $\varphi \in L^1_{loc}$ satisfying $\varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$ for almost all (v, v_*, v', v'_*) such that $v + v_* = v' + v'_*$ and $\omega(v) + \omega(v_*) = \omega(v') + \omega(v'_*).$

Precise goal: find (minimal) conditions on ω such that φ must be a linear combination of 1, v_i and ω(v).

Main question

Given $\omega : \mathbb{R}^d \to \mathbb{R}$, find all the functions $\varphi \in L^1_{loc}$ satisfying $\varphi(v) + \varphi(v_*) = \varphi(v') + \varphi(v'_*),$ for almost all (v, v_*, v', v'_*) such that $v + v_* = v' + v'_*$ and $\omega(v) + \omega(v_*) = \omega(v') + \omega(v'_*).$

Precise goal: find (minimal) conditions on ω such that φ must be a linear combination of 1, v_i and ω(v).

Main difficulties: We do not want to assume too much smoothness on ω, and even less on φ. We do not have an explicit parameterization of the set of admissible collision velocities!

• Let $\omega \in \mathcal{C}^2(\mathbb{R}^d_*, \mathbb{R})$, $d \in \{2, 3\}$.

- Let $\omega \in \mathcal{C}^2(\mathbb{R}^d_*, \mathbb{R})$, $d \in \{2, 3\}$.
- Main hypothesis: Assume there exists $i \neq j \in \{1, \dots, d\}$, such that

 $\{1,\partial_i\omega,\partial_j\omega\}$ are linearly independant.

- Let $\omega \in \mathcal{C}^2(\mathbb{R}^d_*, \mathbb{R})$, $d \in \{2, 3\}$.
- Main hypothesis: Assume there exists $i \neq j \in \{1, \dots, d\}$, such that

 $\{1,\partial_i\omega,\partial_j\omega\}$ are linearly independant.

▶ If $\varphi \in C^1(\mathbb{R}^d_*, \mathbb{R})$ satisfies

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v}') + \varphi(\mathbf{v}'_*),$$

for all (v, v_*, v', v'_*) such that

 $\mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_*$ and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*),$

then,

$$\varphi(\mathbf{v}) = \mathbf{a} + \mathbf{b} \cdot \mathbf{v} + \mathbf{c}\,\omega(\mathbf{v}),$$

for some constants $a, c \in \mathbb{R}$ and $b \in \mathbb{R}^d$.

- Let $\omega \in \mathcal{C}^2(\mathbb{R}^d_*, \mathbb{R})$, $d \in \{2, 3\}$.
- Main hypothesis: Assume there exists $i \neq j \in \{1, \dots, d\}$, such that

 $\{1,\partial_i\omega,\partial_j\omega\}$ are linearly independant.

▶ If $\varphi \in C^1(\mathbb{R}^d_*, \mathbb{R})$ satisfies

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v}') + \varphi(\mathbf{v}'_*),$$

for all (v, v_*, v', v'_*) such that

 $\mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_*$ and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*),$

then,

$$\varphi(\mathbf{v}) = \mathbf{a} + \mathbf{b} \cdot \mathbf{v} + \mathbf{c}\,\omega(\mathbf{v}),$$

for some constants $a, c \in \mathbb{R}$ and $b \in \mathbb{R}^d$.

L_{loc}^1 case [B. and Desvillettes 2018]

- Let $\omega \in \mathcal{C}^2(\mathbb{R}^d_*, \mathbb{R})$, $d \in \{2, 3\}$.
- Main hypothesis: Assume there exists $i \neq j \in \{1, \dots, d\}$, such that

 $\{1, \partial_i \omega, \partial_j \omega\}$ are linearly independant.

- Extra hypothesis: Assume the boundary of {(v, v_{*}) | ∇ω(v) ≠ ∇ω(v_{*})} is of measure zero.
- ▶ If $\varphi \in L^1_{loc}$ satisfies

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v}') + \varphi(\mathbf{v}'_*),$$

for almost all (v, v_*, v', v'_*) such that

 $\mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_*$ and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*),$

then,

$$\varphi(\mathbf{v}) = \mathbf{a} + \mathbf{b} \cdot \mathbf{v} + \mathbf{c}\,\omega(\mathbf{v}),$$

for some constants $a, c \in \mathbb{R}$ and $b \in \mathbb{R}^d$.

• The admissible collision velocities can be reduced to the (v, v_*, z) s.t.

$$\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v} - \mathbf{z}) + \omega(\mathbf{v}_* + \mathbf{z}),$$

where v' = v - z and $v'_* = v_* + z$.

• The admissible collision velocities can be reduced to the (v, v_*, z) s.t.

$$\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v} - \mathbf{z}) + \omega(\mathbf{v}_* + \mathbf{z}),$$

where v' = v - z and $v'_* = v_* + z$.

 If ∇ω(v) ≠ ∇ω(v_{*}), then locally, the set of admissible collision velocities can be parametrized by:

$$z = \gamma(\mathbf{v}, \mathbf{v}_*, \sigma), \quad \sigma \in \mathbb{R}^{d-1},$$

with $\gamma(\mathbf{v}, \mathbf{v}_*, \mathbf{0}) = \mathbf{0}$ and rank $(D_\sigma \gamma(\mathbf{v}, \mathbf{v}_*, \mathbf{0})) = d - 1$.

• The admissible collision velocities can be reduced to the (v, v_*, z) s.t.

$$\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v} - \mathbf{z}) + \omega(\mathbf{v}_* + \mathbf{z}),$$

where v' = v - z and $v'_* = v_* + z$.

 If ∇ω(v) ≠ ∇ω(v_{*}), then locally, the set of admissible collision velocities can be parametrized by:

$$z = \gamma(\mathbf{v}, \mathbf{v}_*, \sigma), \quad \sigma \in \mathbb{R}^{d-1},$$

with $\gamma(\mathbf{v}, \mathbf{v}_*, \mathbf{0}) = \mathbf{0}$ and rank $(D_{\sigma}\gamma(\mathbf{v}, \mathbf{v}_*, \mathbf{0})) = d - 1$.

▶ In the L^1_{loc} case, we assume that, for almost all $v, v_* \in \mathbb{R}^d_*$ such that $\nabla \omega(v) \neq \nabla \omega(v_*)$, and almost all $\sigma \in \mathbb{R}^{d-1}$ in a neighbourhood of 0,

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v} - \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)) + \varphi(\mathbf{v}_* + \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)).$$

We want to show that $(\nabla \varphi(v) - \nabla \varphi(v_*)) \times (\nabla \omega(v) - \nabla \omega(v_*)) = 0.$

We want to show that $(\nabla \varphi(v) - \nabla \varphi(v_*)) \times (\nabla \omega(v) - \nabla \omega(v_*)) = 0.$

• Starting from

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v} - \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)) + \varphi(\mathbf{v}_* + \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)),$$

we get

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},\mathbf{0})^{\mathsf{T}}\left(\nabla\varphi(\mathbf{v})-\nabla\varphi(\mathbf{v}_{*})\right)=0.$$

We want to show that $(\nabla \varphi(v) - \nabla \varphi(v_*)) \times (\nabla \omega(v) - \nabla \omega(v_*)) = 0.$

• Starting from

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v} - \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)) + \varphi(\mathbf{v}_* + \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)),$$

we get

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_*,\mathbf{0})^{\mathsf{T}}\left(\nabla \varphi(\mathbf{v})-\nabla \varphi(\mathbf{v}_*)\right)=0.$$

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},\mathbf{0})^{\mathsf{T}}\left(
abla\omega(\mathbf{v})-
abla\omega(\mathbf{v}_{*})
ight)=\mathbf{0}.$$

We want to show that $(\nabla \varphi(v) - \nabla \varphi(v_*)) \times (\nabla \omega(v) - \nabla \omega(v_*)) = 0.$

• Starting from

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v} - \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)) + \varphi(\mathbf{v}_* + \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)),$$

we get

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},0)^{\mathsf{T}}\left(\nabla\varphi(\mathbf{v})-\nabla\varphi(\mathbf{v}_{*})\right)=0.$$

• Similarly,

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},0)^{\mathsf{T}}\left(\nabla\omega(\mathbf{v})-\nabla\omega(\mathbf{v}_{*})\right)=0.$$

Since D_σγ(v, v_{*}, 0) is of maximal rank, ∇φ(v) − ∇φ(v_{*}) and ∇ω(v) − ∇ω(v_{*}) must be collinear.

We want to show that $(\nabla \varphi(v) - \nabla \varphi(v_*)) \times (\nabla \omega(v) - \nabla \omega(v_*)) = 0.$

• Starting from

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v} - \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)) + \varphi(\mathbf{v}_* + \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)),$$

we get

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},\mathbf{0})^{\intercal}\left(
abla \varphi(\mathbf{v})-
abla \varphi(\mathbf{v}_{*})
ight)=\mathbf{0}.$$

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},0)^{\mathsf{T}}\left(\nabla\omega(\mathbf{v})-\nabla\omega(\mathbf{v}_{*})\right)=0.$$

- Since D_σγ(v, v_{*}, 0) is of maximal rank, ∇φ(v) − ∇φ(v_{*}) and ∇ω(v) − ∇ω(v_{*}) must be collinear.
- This only holds when $\nabla \omega(v) \neq \nabla \omega(v_*)$, but when $\nabla \omega(v) = \nabla \omega(v_*)$ the statement is trivial.

We want to show that $(\nabla \varphi(v) - \nabla \varphi(v_*)) \times (\nabla \omega(v) - \nabla \omega(v_*)) = 0.$

• Starting from

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v} - \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)) + \varphi(\mathbf{v}_* + \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)),$$

we get

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},0)^{\mathsf{T}}\left(
abla \varphi(\mathbf{v})-
abla \varphi(\mathbf{v}_{*})
ight)=0.$$

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},0)^{\mathsf{T}}\left(\nabla\omega(\mathbf{v})-\nabla\omega(\mathbf{v}_{*})\right)=0.$$

- Since D_σγ(v, v_{*}, 0) is of maximal rank, ∇φ(v) − ∇φ(v_{*}) and ∇ω(v) − ∇ω(v_{*}) must be collinear.
- This only holds when $\nabla \omega(\mathbf{v}) \neq \nabla \omega(\mathbf{v}_*)$, but when $\nabla \omega(\mathbf{v}) = \nabla \omega(\mathbf{v}_*)$ the statement is trivial.
- All of this can be done in the weak sense.

We want to show that $(\nabla \varphi(\mathbf{v}) - \nabla \varphi(\mathbf{v}_*)) \times (\nabla \omega(\mathbf{v}) - \nabla \omega(\mathbf{v}_*)) = 0.$

• Starting from

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v} - \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)) + \varphi(\mathbf{v}_* + \gamma(\mathbf{v}, \mathbf{v}_*, \sigma)),$$

we get

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},0)^{\mathsf{T}}\left(
abla \varphi(\mathbf{v})-
abla \varphi(\mathbf{v}_{*})
ight)=0.$$

$$D_{\sigma}\gamma(\mathbf{v},\mathbf{v}_{*},0)^{\mathsf{T}}\left(\nabla\omega(\mathbf{v})-\nabla\omega(\mathbf{v}_{*})\right)=0.$$

- Since D_σγ(v, v_{*}, 0) is of maximal rank, ∇φ(v) − ∇φ(v_{*}) and ∇ω(v) − ∇ω(v_{*}) must be collinear.
- This only holds when $\nabla \omega(\mathbf{v}) \neq \nabla \omega(\mathbf{v}_*)$, but when $\nabla \omega(\mathbf{v}) = \nabla \omega(\mathbf{v}_*)$ the statement is trivial.
- All of this can be done in the weak sense.

In coordinates, we have just shown that

$$(\partial_i \varphi(\mathbf{v}) - \partial_i \varphi(\mathbf{v}_*)) (\partial_j \omega(\mathbf{v}) - \partial_j \omega(\mathbf{v}_*)) = (\partial_j \varphi(\mathbf{v}) - \partial_j \varphi(\mathbf{v}_*)) (\partial_i \omega(\mathbf{v}) - \partial_i \omega(\mathbf{v}_*)). \quad (\star)$$

In coordinates, we have just shown that

$$\begin{aligned} (\partial_i \varphi(\mathbf{v}) - \partial_i \varphi(\mathbf{v}_*)) \left(\partial_j \omega(\mathbf{v}) - \partial_j \omega(\mathbf{v}_*) \right) &= \\ \left(\partial_j \varphi(\mathbf{v}) - \partial_j \varphi(\mathbf{v}_*) \right) \left(\partial_i \omega(\mathbf{v}) - \partial_i \omega(\mathbf{v}_*) \right). \quad (\star) \end{aligned}$$

• The main idea, based on [Desvillettes 2015], is then to test (*) against well chosen functions:

$$\int (\star) \ dv_*, \qquad \int (\star) \ \partial_i \omega(v_*) dv_*, \qquad \int (\star) \ \partial_j \omega(v_*) dv_*.$$

In coordinates, we have just shown that

$$(\partial_i \varphi(\mathbf{v}) - \partial_i \varphi(\mathbf{v}_*)) (\partial_j \omega(\mathbf{v}) - \partial_j \omega(\mathbf{v}_*)) = (\partial_j \varphi(\mathbf{v}) - \partial_j \varphi(\mathbf{v}_*)) (\partial_i \omega(\mathbf{v}) - \partial_i \omega(\mathbf{v}_*)). \quad (\star)$$

• The main idea, based on [Desvillettes 2015], is then to test (*) against well chosen functions:

$$\int (\star) \ dv_*, \qquad \int (\star) \ \partial_i \omega(v_*) dv_*, \qquad \int (\star) \ \partial_j \omega(v_*) dv_*.$$

• The resulting equalities can be rewritten as a linear system Ax = y, where

$$A = \begin{pmatrix} \int dv_* & \int \partial_i \omega(v_*) dv_* & \int \partial_j \omega(v_*) dv_* \\ \int \partial_i \omega(v_*) dv_* & \int (\partial_i \omega(v_*))^2 dv_* & \int \partial_i \omega(v_*) \partial_j \omega(v_*) dv_* \\ \int \partial_j \omega(v_*) dv_* & \int \partial_i \omega(v_*) \partial_j \omega(v_*) dv_* & \int (\partial_j \omega(v_*))^2 dv_* \end{pmatrix},$$
$$= \begin{pmatrix} \partial_j \varphi(v) \partial_i \omega(v) - \partial_i \varphi(v) \partial_j \omega(v) \\ -\partial_j \varphi(v) \\ \partial_i \varphi(v) \end{pmatrix}, \quad y = \begin{pmatrix} y_1 + y_2 \partial_i \omega(v) + y_3 \partial_j \omega(v) \\ y_4 + y_5 \partial_i \omega(v) + y_6 \partial_j \omega(v) \\ y_7 + y_8 \partial_i \omega(v) + y_9 \partial_j \omega(v) \end{pmatrix}$$

Х

$$\begin{aligned} (\partial_i \varphi(\mathbf{v}) - \partial_i \varphi(\mathbf{v}_*)) \left(\partial_j \omega(\mathbf{v}) - \partial_j \omega(\mathbf{v}_*) \right) &= \\ \left(\partial_j \varphi(\mathbf{v}) - \partial_j \varphi(\mathbf{v}_*) \right) \left(\partial_i \omega(\mathbf{v}) - \partial_i \omega(\mathbf{v}_*) \right). \quad (\star) \end{aligned}$$

$$\begin{aligned} (\partial_i \varphi(\mathbf{v}) - \partial_i \varphi(\mathbf{v}_*)) \left(\partial_j \omega(\mathbf{v}) - \partial_j \omega(\mathbf{v}_*) \right) &= \\ \left(\partial_j \varphi(\mathbf{v}) - \partial_j \varphi(\mathbf{v}_*) \right) \left(\partial_i \omega(\mathbf{v}) - \partial_i \omega(\mathbf{v}_*) \right). \quad (\star) \end{aligned}$$

• Since 1, $\partial_i \omega$ and $\partial_j \omega$ are linearly independent, the Gram matrix A is invertible, and $x = A^{-1}y$, which yields

$$\begin{cases} \partial_i \varphi(\mathbf{v}) = b_i + c_i \partial_i \omega(\mathbf{v}) + d_i \partial_j \omega(\mathbf{v}) \\ \partial_j \varphi(\mathbf{v}) = b_j + c_j \partial_j \omega(\mathbf{v}) + d_j \partial_i \omega(\mathbf{v}) \end{cases}$$

$$\begin{aligned} (\partial_i \varphi(\mathbf{v}) - \partial_i \varphi(\mathbf{v}_*)) \left(\partial_j \omega(\mathbf{v}) - \partial_j \omega(\mathbf{v}_*) \right) &= \\ \left(\partial_j \varphi(\mathbf{v}) - \partial_j \varphi(\mathbf{v}_*) \right) \left(\partial_i \omega(\mathbf{v}) - \partial_i \omega(\mathbf{v}_*) \right). \quad (\star) \end{aligned}$$

• Since 1, $\partial_i \omega$ and $\partial_j \omega$ are linearly independent, the Gram matrix A is invertible, and $x = A^{-1}y$, which yields

$$\begin{cases} \partial_i \varphi(\mathbf{v}) = b_i + c_i \partial_i \omega(\mathbf{v}) + d_i \partial_j \omega(\mathbf{v}) \\ \partial_j \varphi(\mathbf{v}) = b_j + c_j \partial_j \omega(\mathbf{v}) + d_j \partial_i \omega(\mathbf{v}) \end{cases}$$

 Plugging this back in (⋆), and using once more the linear independence of 1, ∂_iω and ∂_jω, we get

$$c_i = c_j$$
 and $d_i = 0 = d_j$.

$$\begin{aligned} (\partial_i \varphi(\mathbf{v}) - \partial_i \varphi(\mathbf{v}_*)) \left(\partial_j \omega(\mathbf{v}) - \partial_j \omega(\mathbf{v}_*) \right) &= \\ \left(\partial_j \varphi(\mathbf{v}) - \partial_j \varphi(\mathbf{v}_*) \right) \left(\partial_i \omega(\mathbf{v}) - \partial_i \omega(\mathbf{v}_*) \right). \quad (\star) \end{aligned}$$

• Since 1, $\partial_i \omega$ and $\partial_j \omega$ are linearly independent, the Gram matrix A is invertible, and $x = A^{-1}y$, which yields

$$\begin{cases} \partial_i \varphi(\mathbf{v}) = b_i + c_i \partial_i \omega(\mathbf{v}) + d_i \partial_j \omega(\mathbf{v}) \\ \partial_j \varphi(\mathbf{v}) = b_j + c_j \partial_j \omega(\mathbf{v}) + d_j \partial_i \omega(\mathbf{v}) \end{cases}$$

 Plugging this back in (⋆), and using once more the linear independence of 1, ∂_iω and ∂_jω, we get

$$c_i = c_j$$
 and $d_i = 0 = d_j$.

• Therefore $abla arphi(\mathbf{v}) = b + c
abla \omega(\mathbf{v})$ and thus

$$\varphi(\mathbf{v}) = \mathbf{a} + \mathbf{b} \cdot \mathbf{v} + \mathbf{c}\omega(\mathbf{v}).$$

Some counterexamples
Some counterexamples

In dimension 1 (not covered by our results), there are many functions ω for which the set of admissible collision velocities is trivial. For instance, if ω is strictly concave or convex, then the only (v, v_{*}, v', v'_{*}) satisfying

$$\mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_*$$
 and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*)$

are of the form (v, v_*, v, v_*) and (v, v_*, v_*, v) , and thus

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v}') + \varphi(\mathbf{v}'_*)$$

holds for any function φ .

Some counterexamples

In dimension 1 (not covered by our results), there are many functions ω for which the set of admissible collision velocities is trivial. For instance, if ω is strictly concave or convex, then the only (v, v_{*}, v', v'_{*}) satisfying

$$\mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_*$$
 and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*)$

are of the form $(\textit{v},\textit{v}_{*},\textit{v},\textit{v}_{*})$ and $(\textit{v},\textit{v}_{*},\textit{v}_{*},\textit{v})$, and thus

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v}') + \varphi(\mathbf{v}'_*)$$

holds for any function φ .

• In dimension d = 2, if 1, $\partial_i \omega$ and $\partial_j \omega$ are NOT linearly independent, then up to a change of coordinate ω is of the form

$$\omega(\mathbf{v}) = g(\mathbf{v}_1) + \beta \mathbf{v}_2.$$

Therefore, as soon as the set of admissible collision velocities is trivial for g, any function φ of the form

$$\varphi(\mathbf{v}) = h(\mathbf{v}_1) + b\mathbf{v}_2$$

is a collision invariant.

Maxime Breden

When 1, $\partial_i\omega$ and $\partial_j\omega$ are linearly independent, the collision invariant must be of the form

$$\varphi(\mathbf{v}) = \mathbf{a} + \mathbf{b} \cdot \mathbf{v} + \mathbf{c}\omega(\mathbf{v}).$$

However, these collision invariant give rise to different equilibria.

When 1, $\partial_i\omega$ and $\partial_j\omega$ are linearly independent, the collision invariant must be of the form

$$\varphi(\mathbf{v}) = \mathbf{a} + \mathbf{b} \cdot \mathbf{v} + \mathbf{c}\omega(\mathbf{v}).$$

However, these collision invariant give rise to different equilibria.

• For the Boltzmann equation for particles (classical or quantum), the relation is given by

$$f_{\mathsf{eq}}(v) = rac{e^{arphi(v)}}{1 - arepsilon e^{arphi(v)}}.$$

When 1, $\partial_i\omega$ and $\partial_j\omega$ are linearly independent, the collision invariant must be of the form

$$\varphi(\mathbf{v}) = \mathbf{a} + \mathbf{b} \cdot \mathbf{v} + \mathbf{c}\omega(\mathbf{v}).$$

However, these collision invariant give rise to different equilibria.

• For the Boltzmann equation for particles (classical or quantum), the relation is given by

$$f_{\mathsf{eq}}({m v}) = rac{e^{arphi({m v})}}{1-arepsilon e^{arphi({m v})}}.$$

▶ When $\varepsilon = 0$ (non-quantum case), we recover Maxwellian distributions.

- ▶ When $\varepsilon = 1$, we recover Bose-Einstein distributions.
- ▶ When $\varepsilon = -1$, we recover Fermi-Dirac distributions.

When 1, $\partial_i\omega$ and $\partial_j\omega$ are linearly independent, the collision invariant must be of the form

$$\varphi(\mathbf{v}) = \mathbf{a} + \mathbf{b} \cdot \mathbf{v} + \mathbf{c}\omega(\mathbf{v}).$$

However, these collision invariant give rise to different equilibria.

• For the Boltzmann equation for particles (classical or quantum), the relation is given by

$$f_{\mathsf{eq}}(v) = rac{e^{arphi(v)}}{1 - arepsilon e^{arphi(v)}}.$$

- ▶ When $\varepsilon = 0$ (non-quantum case), we recover Maxwellian distributions.
- ▶ When $\varepsilon = 1$, we recover Bose-Einstein distributions.
- ▶ When $\varepsilon = -1$, we recover Fermi-Dirac distributions.
- For the Boltzmann equation for waves, the relation is given by

$$f_{\mathsf{eq}}(v) = rac{1}{arphi(v)}.$$

1 Introduction

2 Examples of Boltzmann-like equations with different energies

3 Main results

4 Related questions

• In the example discussed up to now for kinetic equations for waves, we only studied the so-called *4-waves interactions*, characterized by

$$\mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_*$$
 and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*).$

• In the example discussed up to now for kinetic equations for waves, we only studied the so-called *4-waves interactions*, characterized by

$$\mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_*$$
 and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*)$

• However, in the context of weakly interacting waves, the most important effect is given by *3-waves interactions*, characterized by

$$v + v_* = v'$$
 and $\omega(v) + \omega(v_*) = \omega(v')$.

• In the example discussed up to now for kinetic equations for waves, we only studied the so-called *4-waves interactions*, characterized by

$$\mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_*$$
 and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*)$

• However, in the context of weakly interacting waves, the most important effect is given by *3-waves interactions*, characterized by

$$\mathbf{v} + \mathbf{v}_* = \mathbf{v}'$$
 and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}').$

• For some dispersion relations (e.g. $\omega(v) = \sqrt{|v|}$), such interactions are not possible, which is why we then consider the 4-waves kinetic equation.

• In the example discussed up to now for kinetic equations for waves, we only studied the so-called *4-waves interactions*, characterized by

$$\mathbf{v} + \mathbf{v}_* = \mathbf{v}' + \mathbf{v}'_*$$
 and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}') + \omega(\mathbf{v}'_*)$

• However, in the context of weakly interacting waves, the most important effect is given by *3-waves interactions*, characterized by

$$v + v_* = v'$$
 and $\omega(v) + \omega(v_*) = \omega(v')$.

- For some dispersion relations (e.g. $\omega(v) = \sqrt{|v|}$), such interactions are not possible, which is why we then consider the 4-waves kinetic equation.
- For other dispersion relations, for example $\omega(v) = |v|^{3/2}$ corresponding to capillary waves, these 3-waves interactions do occur, and they lead to a slightly different kinetic equation.

The 3-waves collision kernel

• The collision operator for these 3-waves interaction is given by

$$ilde{Q}_3(f)(v) = \int \left(R(v, v_*, v') - R(v_*, v, v') - R(v', v, v_*) \right) dv_* dv',$$

where

$$R(v, v_*, v') = B(v, v_*, v') (f(v_*)f(v') - f(v)(f(v_*) + f(v'))) \\ \times \delta_{\{v=v_*+v'\}} \delta_{\{\omega(v)=\omega(v_*)+\omega(v')\}}.$$

The 3-waves collision kernel

• The collision operator for these 3-waves interaction is given by

$$ilde{Q}_3(f)(v) = \int \left(R(v, v_*, v') - R(v_*, v, v') - R(v', v, v_*) \right) dv_* dv',$$

where

$$R(v, v_*, v') = B(v, v_*, v') \left(f(v_*) f(v') - f(v) (f(v_*) + f(v')) \right) \\ \times \delta_{\{v = v_* + v'\}} \delta_{\{\omega(v) = \omega(v_*) + \omega(v')\}}.$$

• In this situation, the collision invariants must satisfy

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v}'),$$

for all (v, v_*, v') such that

$$v + v_* = v'$$
 and $\omega(v) + \omega(v_*) = \omega(v')$.

Partial results [B. and Desvillettes 2018]

• Let $\omega \in \mathcal{C}^1(\mathbb{R}^d_*, \mathbb{R})$, $d \in \{2, 3\}$.

Partial results [B. and Desvillettes 2018]

- Let $\omega \in \mathcal{C}^1(\mathbb{R}^d_*, \mathbb{R})$, $d \in \{2, 3\}$.
- Main hypotheses: Assume ω(0) = 0, ∇ω(0) = 0, ω(v) > 0 for all v ≠ 0 and ∇ω(v) ≠ 0 for all v ≠ 0. Assume also that, for all a ∈ ℝ, the set ω⁻¹({a}) is connected.

Partial results [B. and Desvillettes 2018]

• Let
$$\omega \in \mathcal{C}^1(\mathbb{R}^d_*,\mathbb{R})$$
, $d \in \{2,3\}$.

- Main hypotheses: Assume ω(0) = 0, ∇ω(0) = 0, ω(v) > 0 for all v ≠ 0 and ∇ω(v) ≠ 0 for all v ≠ 0. Assume also that, for all a ∈ ℝ, the set ω⁻¹({a}) is connected.
- ▶ If $\varphi \in C^1(\mathbb{R}^d_*, \mathbb{R})$ satisfies

$$\varphi(\mathbf{v}) + \varphi(\mathbf{v}_*) = \varphi(\mathbf{v}'),$$

for all (v, v_*, v') such that

$$\mathbf{v} + \mathbf{v}_* = \mathbf{v}'$$
 and $\omega(\mathbf{v}) + \omega(\mathbf{v}_*) = \omega(\mathbf{v}'),$

then,

$$\varphi(\mathbf{v}) = \mathbf{b} \cdot \mathbf{v} + \mathbf{c}\,\omega(\mathbf{v}),$$

for some constants $b \in \mathbb{R}^d$ and $c \in \mathbb{R}$.

• Consider $\tilde{\varphi}(v) = \varphi(v) - \nabla \varphi(0) \cdot v$, so that $\nabla \tilde{\varphi}(0) = 0$.

- Consider $\tilde{\varphi}(v) = \varphi(v) \nabla \varphi(0) \cdot v$, so that $\nabla \tilde{\varphi}(0) = 0$.
- Similarly to the 4-waves case, consider the manifold of admissible collision velocities, and show that

 $\nabla \omega(\mathbf{v}) \ // \ \nabla \tilde{\varphi}(\mathbf{v})$.

- Consider $\tilde{\varphi}(v) = \varphi(v) \nabla \varphi(0) \cdot v$, so that $\nabla \tilde{\varphi}(0) = 0$.
- Similarly to the 4-waves case, consider the manifold of admissible collision velocities, and show that

$$abla \omega(\mathbf{v}) \ // \
abla ilde{arphi}(\mathbf{v}) \ .$$

• Deduce that $\tilde{\varphi}$ is constant on the level sets of ω , therefore there is a function $\gamma: \mathbb{R} \to \mathbb{R}$ such that

$$\tilde{\varphi}(\mathbf{v}) = \gamma(\omega(\mathbf{v})).$$

- Consider $\tilde{\varphi}(v) = \varphi(v) \nabla \varphi(0) \cdot v$, so that $\nabla \tilde{\varphi}(0) = 0$.
- Similarly to the 4-waves case, consider the manifold of admissible collision velocities, and show that

$$abla \omega(\mathbf{v}) \ // \
abla ilde{arphi}(\mathbf{v}) \ .$$

• Deduce that $\tilde{\varphi}$ is constant on the level sets of ω , therefore there is a function $\gamma: \mathbb{R} \to \mathbb{R}$ such that

$$\tilde{\varphi}(\mathbf{v}) = \gamma(\omega(\mathbf{v})).$$

• Conclude by showing that γ is in fact linear.

• There is one less invariant (the mass) than in the 4-waves case.

- There is one less invariant (the mass) than in the 4-waves case.
- The result we proved is only valid for smooth collision invariants.

- There is one less invariant (the mass) than in the 4-waves case.
- The result we proved is only valid for smooth collision invariants.
- Although the assumptions on ω are more stringent than in the 4-waves case, they cover the relevant dispersion law $\omega(v) = |v|^{3/2}$.

- There is one less invariant (the mass) than in the 4-waves case.
- The result we proved is only valid for smooth collision invariants.
- Although the assumptions on ω are more stringent than in the 4-waves case, they cover the relevant dispersion law $\omega(v) = |v|^{3/2}$.
- Very interestingly, there exists another physically relevant dispersion law

$$\omega(\mathbf{v}) = \frac{\mathbf{v}_1}{1+|\mathbf{v}|^2},$$

corresponding to Rossby waves (also called planetary waves), which admits an extra collision invariant [Balk 1991]:

$$\varphi(\mathbf{v}) = \arctan\left(\frac{\mathbf{v}_1\sqrt{3} + \mathbf{v}_2}{|\mathbf{v}|^2}\right) + \arctan\left(\frac{\mathbf{v}_1\sqrt{3} - \mathbf{v}_2}{|\mathbf{v}|^2}\right)$$

- There is one less invariant (the mass) than in the 4-waves case.
- The result we proved is only valid for smooth collision invariants.
- Although the assumptions on ω are more stringent than in the 4-waves case, they cover the relevant dispersion law $\omega(v) = |v|^{3/2}$.
- Very interestingly, there exists another physically relevant dispersion law

$$\omega(\mathbf{v}) = \frac{\mathbf{v}_1}{1+|\mathbf{v}|^2},$$

corresponding to Rossby waves (also called planetary waves), which admits an extra collision invariant [Balk 1991]:

$$\varphi(\mathbf{v}) = \arctan\left(\frac{\mathbf{v}_1\sqrt{3} + \mathbf{v}_2}{|\mathbf{v}|^2}\right) + \arctan\left(\frac{\mathbf{v}_1\sqrt{3} - \mathbf{v}_2}{|\mathbf{v}|^2}\right)$$

• This example violates several assumptions of our theorem at once. Therefore it is not clear which are the properties of ω (or φ) allowing for this extra invariant to exist!

Maxime Breden

THANK YOU FOR YOUR ATTENTION!