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Dynamics of condensation

ZRP with g(k) = 1 + b/k , b = 4 , ρc = 1/(b− 2) = 0.5 , ρ = 10
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Previous rigorous results on condensation dynamics
Stationary dynamics for ZRP (metastability)

L fixed, N →∞, p(x, y) reversible [Beltrán, Landim (2010,11,12,15)]

Y N
(
η(tN1+b)

)
→ Yt RW on (subset of) Λ , rates ∝ capΛ(x, y)

L fixed, N →∞, p(x, y) asymmetric [Landim (2014), Seo (2018)]

L,N →∞, N/L→ ρ > ρc, p(x, y) symmetric on rescaled torus ⊂ T

Y L
(
η(tL1+b)

)
→ Yt Lévy-type on T [Armendáriz, G., Loulakis (2017)]

[Bovier, Neukirch (2014)]

Nucleation/Coarsening for ZRP

L fixed, N →∞, p(x, y) irreducible [Beltrán, Jara, Landim (2017)]

η(tN2)/N → Xt absorbed diffusion on ∆L

Inclusion process

L fixed, N →∞, d = dN � 1/ logN , time scale t/dN

Coarsening for p(x, y) symmetric, NdN →∞ [G., Redig, Vafayi (2013)]

Stat. dynamics with multiple scales [Bianchi, Dommers, Giardiná (2017)]
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Nucleation and coarsening/MF limits

Jatuviriyapornchai, G., Stoch. Proc. Appl. 129(4), 1455-1475 (2019)

Jatuviriyapornchai, G., J. Phys. A: Math. Theor. 49(18), 185005 (2016)

Godréche, Drouffe, J. Phys. A: Math. Theor. 50(1), 015005 (2016)

Godréche, Luck, J. Phys. A: Math. Theor. 38(33), 7215 (2005)

Y.-X. Chau, C. Connaughton, S. G., J. Stat. Mech., P11031 (2015)

J. Cao, P. Chleboun, S. G., J. Stat. Phys. 155, 523543 (2014)

S. G., F. Redig, K. Vafayi, Electron. J. Probab. 18, 123 (2013)
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Mean-field equation

SPS with generator Lf(η)=
∑
x,y∈Λ

p(x, y)u(ηx, ηy)
(
f(ηx,y)− f(η)

)
Empirical measures FLk (η) =

1

L

∑
x∈Λ

δηx,k ∈ [0, 1]

Assume complete graph p(x, y) = 1/(L−1)

jump rates u(k, l) ≤ C1k(C2 + l)

initial conditions η(0) such that FLk (η(0))→ f(0) on N0

m0(0) = 1 , m1(0) =
∑
k

kfk(0) = ρ <∞ , m2(0) <∞

and α1, α2 > 0 such that for all L ≥ 1

η(0) ∈ Ωα :=
{
η :

1

L

∑
x∈Λ

ηx < α1,
1

L

∑
x∈Λ

η2
x < α2

}
→ for example ηx(0) ∼ f(0) i.i.d. bounded
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Mean-field equation

Theorem – LLN for empirical process

Under above assumptions, for all k ∈ N0 the empirical processes(
FLk (η(t)) : t ≥ 0

)
converge weakly on path space to

(
fk(t) : t ≥ 0

)
as L→∞,

which are given as the unique solution of the mean-field (rate) equation

d

dt
fk(t) =

∑
l≥0

(
u(k + 1, l)fl(t)fk+1(t) + u(l, k − 1)fl(t)fk−1(t)

)
−
∑
l≥0

(
u(k, l) + u(l, k)

)
fl(t)fk(t) for all k ≥ 0 , (MFE)

with initial condition f(0) given above.

This implies in particular uniqueness of the solution to (MFE) for given f(0),

as well as convergence of expectations,

fLk (t) := EL
[
FLk (η(t))

]
=

1

L

∑
x∈Λ

PL
[
ηx(t) = k

]
→ fk(t) .
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Propagation of chaos

Assume in addition symmetry of initial conditions, i.e.

the law of
{
ηx(0) : x ∈ Λ

}
is permutation invariant for each L ≥ 1 .

Corollary – Propagation of chaos (see e.g. [e.g. dai Pra (2017)])

Under the conditions of the Theorem and above, for any finite-dimensional
marginal with distinct x1, . . . , xm ∈ Λ, m ≥ 1, we have for any T > 0(

ηxi(t) : t ∈ [0, T ]
)

converge to independent birth-death chains ,

with (non-linear) master equation (MFE) and generator

Lf(t)h(k) = αk(t)[h(k+1)− h(k)] + βk(t)[h(k−1)− h(k)] ,

with rates αk(t) =
∑
l≥0

u(l, k)fl(t) and βk(t) =
∑
l≥0

u(k, l)fl(t) .

[Gärtner (1988) WASEP; Rezakhanlou (1994) SSEP and ZRP, (1996) multi-type model . . .]
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Proof of main result

1 existence of limits t 7→ f(t) via tightness

2 limits are solutions of (MFE)

3 uniqueness of solutions of (MFE)

Moments. mL
n(t) := EL

[∑
k≥0

knFLk (η(t))
]

=
∑
k≥0

knfLk (t)

mL
0 (t) ≡ 1 and mL

1 (t) ≡ mL
1 (0)

L→∞−→ ρ .

Lemma. C > 0 such that mL
2 (t) ≤ (α2 + Ct)eCt for all t ≥ 0, L ≥ 1,

using
d

dt
EL
[
FLk (η(t))

]
= EL

[
LFLk (η(t))

]
and Gronwall .
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Proof of main result
1. Tightness. For each bounded h : N0 → R the law of

t 7→ H(η(t)) :=
∑
k≥0

hkF
L
k (η(t))

on path space D[0,∞)(R) is tight as L→∞.

Using a version of Aldous’ criterion,
∣∣∑

k hkF
L
k (η)

∣∣ ≤ ‖h‖∞ and Markov’s
inequality we need to establish

lim sup
L→∞

sup
t<δ

sup
ζ∈Ωα

ELζ
[
|H(η(t))−H(ζ)|

]
→ 0 as δ → 0+ .

Itô’s formula Mh(t) := H(η(t))−H(η(0))−
∫ t

0

LH(η(s))ds

is a local m’gale with pred. QV 〈Mh〉(t) =

∫ t

0

[LH2 − 2HLH](η(s))ds .

LH(η)=
∑
k≥0

hk

[
FLk−1(η)

∑
l≥1

u(l, k−1)FLl (η) + FLk+1(η)
∑
l≥0

u(k+1, l)FLl (η)

−FLk (η)
∑
l≥0

(
u(k, l) + u(l, k)

)
FLl (η)

]
(1 + 1/L) + ∆L(η)
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Proof of main result

EL
[∣∣H(η(t))−H(η(0))

∣∣] ≤ ∫ t

0

EL|LH(η(s))|ds︸ ︷︷ ︸
(1)

+EL
[
[Mh](t)

]︸ ︷︷ ︸
(2)

.

with estimates

(1) ≤ t‖h‖∞
(

4C1α1 (α1 + C2) +
C

L
(1 + t)eCt

)
(2) ≤ t‖h‖2∞

1

L

(
4C1α1 (α1 + C2) +

C

L
(1 + t)eCt

)
Both vanish as t ≤ δ → 0 uniformly in L which implies tightness.

2. Estimate for (2) implies EL[[Mh](t)]→ 0 as L→∞ for all t ≥ 0 ,

so the martingale vanishes and each limit solves a weak version of (MFE)

∑
k≥0

hk
(
fk(t)− fk(0)

)
=

∫ t

0

∑
k≥0

hk
(
L†f(s)f(s)

)
k
ds .
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Proof of main result
3. Uniqueness of solutions of (MFE)

moments mn(t) =
∑
k≥0 k

nfk(t)

m0(t) ≡ m0(0) and m1(t) ≡ m1(0) = ρ are conserved.

Gronwall estimate mL
2 (t) ≤ (α2 + Ct)eCt for all t ≥ 0 .

Consider f(t), f̂(t) with f(0) = f̂(0) ∈ P(N0) and establish Gronwall for

θ(t) :=
∑
k≥0

(k + 1)
∣∣∆k(t)

∣∣ where ∆k(t) := fk(t)− f̂k(t) .

[Esenturk (2017), Schlichting (2018)], following classical proof [Ball, Penrose (1986)]

Extensions. multiple particle jumps and quantitative bounds

systematic error
∣∣∣EL[H(η(t))−

∑
k≥0

hkfk(t)
]∣∣∣ ≤ CeCt ‖h‖∞

L

random error EL
[∣∣H(η(t))− EL[H(η(t))]

∣∣2]1/2 ≤ CeCt ‖h‖∞√
L
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Scaling analysis for ZRP

Scaling ansatz for phase separated solution with m1(t) = ρ > ρc

fk(t) = fbulk
k (t) + ε2th(kεt) as t→∞

with scale εt → 0 and scaling function h(u), u > 0, and h(u)→ 0 as u→∞

We have fbulk(t)→ fρc and
∑
k>0

kε2th(kεt)→
∫
u>0

uh(u) du = ρ− ρc .

ZRP with rates g(k) = 1 + b/k, b = 4, ρc = 1/2, ρ = 10
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Scaling analysis for ZRP

εt = t−1/2 , h′′(u) +
(u

2
−A+

b

u

)
h′(u) +

(
1− b

u2

)
h(u) = 0

[Godréche (2003); J., G. (2016); Godréche, Drouffe (2016)]
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Coarsening scaling law for ZRP

ZRP with rates g(k) = 1 + b/k with ρc = 1/(b− 2).

Provided we can rigorously establish the scaling solution f(t) for m(0) = ρ > ρc ,

we would have for the empirical measures with εt = t−1/2

lim
t→∞

lim
L→∞

1

ε2t
FL[u/εt](η(t)) = h(u) ,

where h solves h′′(u) +
(
u
2 −A+ b

u

)
h′(u) +

(
1− b

u2

)
h(u) = 0 .

For size-biased samples η̄x of occupation numbers this means

lim
t→∞

lim
L→∞

εtη̄x(t) =

{
0 , with prob. ρc/ρ
U , with prob. 1− ρc/ρ

,

where U has density uh(u)/(ρ− ρc).
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Dynamics of condensation

ZRP with g(k) = 1 + b/k , b = 4 , ρc = 1/(b− 2) = 0.5 , ρ = 10
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Stationary dynamics/metastability

Seo, CMP 366(2), 781839 (2019)

Landim CMP 330(1), 132 (2014)

Armendáriz, G., Loulakis. PTRF 169(12), 105-175 (2017)

Bovier, Neukirch (2014)

Beltrán Landim PTRF 152(3-4), 781807 (2012)
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Canonical measures and condensation

fixed number of particles N : πL,N [ · ] =
νφ[ · ∩

∑
x ηx=N ]

νφ[
∑
x ηx=N ]

Equivalence of ensembles

In the thermodynamic limit L,N →∞ , N/L→ ρ

πL,N → νφ where

{
R(φ) = ρ , ρ ≤ ρc
φ = φc , ρ ≥ ρc

.

fluid

x

Ρ

Ρc

Ηx

fluid

ML�L®0

condensed

ML�L®Ρ-Ρc

ΡcHbL

0 1 2 3 4 5
0

1
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5

b

Ρ

condensed

Ρ>Ρc
HΡ-ΡcLL

x

Ρc

Ηx

[Jeon, March, Pittel ’00; G., Schütz, Spohn ’03; Armendáriz, Loulakis ’09 with G. ’13; Chleboun, G. ’14]
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Metastability

Stationary dynamics of the condensate

Λ = TL, g(k) = 1k>0(1 + b
k ) , b > 21 (!) , p(x, y) NN symmetric

ML(η) = maxx∈Λ ηx , ψL(η) = min
{
x ∈ Λ : ηx = ML(η)

}

Theorem
Let η0 ∼ πL,N and consider the thermodynamic limit L,N →∞ with
L/N → ρ > ρc. On the scale θL = L1+b,

(
1
LψL(ηθLt) : t ≥ 0

)
converges weakly

on path space D
(
[0,∞),T

)
to a Markov process (Yt : t ≥ 0) with stationary,

independent increments and generator

LTf(u) =

∫
T\{0}

(
f(u+ v)− f(u)

) Cb,ρ
|v|(1− |v|)

dy

for all f ∈ C1(T).

Cb,ρ =
(
b−1
b

)
(ρ− ρc)b

(
Γ(1 + b)

∫ ρ−ρc
0

zb(ρ− ρc − z)bdz
)−1
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Method of proof

Potential theory. [Bovier, Eckhoff, Gayrard, Klein (2001,2002) . . . Bovier, den Hollander (2015)]

potential wells Ex ⊂ {η : ψL(η) = x} , πL,N (∪x∈ΛEx)→ 1
time spent outside wells can be ignored

effective rates RL(x, y) = EπL,N |Ex
∑

ζ r(., ζ)Pζ(ητ ∈ Ey)

sharp bounds via capacities ' Cb,ρcapΛ(x, y)L/θL
→ bounds match only after regularization!

Martingale approach. [Landim, Beltran (2011,2012) . . . ]

tightness of Y Lt := 1
LψL(ηθLt) as L→∞

involves uniform upper bounds on rates (coupling)

martingale problem for all f ∈ C1(T)

f(Y Lt )− f(Y L0 )−
∫ t

0

Lf(Y Ls ) ds is a martingale

equilibration replace ψL(ηθLt) with a process on Λ with rates RL
show that trel ≤ CL4 and tmix(ε) ≤ CL5 log 1

ε � θL on the well
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Dynamics of condensation

ZRP with g(k) = 1 + b/k , b = 4 , ρc = 1/(b− 2) = 0.5 , ρ = 10
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hydrodynamics O(L,L2) [subcritical, Stamatakis (2015)]

stationary dynamics of condensate O(L1+b), O(N1+b)
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