Kinetic and stochastic models of condensation

Stefan Grosskinsky

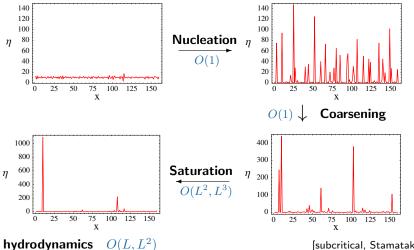
Warwick Mathematics Institute

July 12, 2019

HIM, Bonn

Dynamics of condensation

ZRP with q(k) = 1 + b/k, b = 4, $\rho_c = 1/(b-2) = 0.5$, $\rho = 10$



[subcritical, Stamatakis (2015)]

stationary dynamics of condensate $O(L^{1+b}), O(N^{1+b})$

Previous rigorous results on condensation dynamics Stationary dynamics for ZRP (metastability)

• L fixed, $N \to \infty$, p(x, y) reversible [Beltrán, Landim (2010,11,12,15)]

 $Y^N(\eta(tN^{1+b})) \to Y_t$ RW on (subset of) Λ , rates $\propto \operatorname{cap}_{\Lambda}(x,y)$

L fixed, $N
ightarrow \infty$, p(x,y) asymmetric [Landim (2014), Seo (2018)]

• $L,N \to \infty$, $N/L \to \rho > \rho_c$, p(x,y) symmetric on rescaled torus $\subset \mathbb{T}$

 $Y^L\bigl(\eta(tL^{1+b})\bigr) \to Y_t \quad \text{L\'evy-type on } \mathbb{T}$

[Armendáriz, G., Loulakis (2017)] [Bovier, Neukirch (2014)]

Nucleation/Coarsening for ZRP

• L fixed, $N \to \infty$, p(x, y) irreducible [Beltrán, Jara, Landim (2017)]

 $\eta(tN^2)/N
ightarrow {f X}_t$ absorbed diffusion on Δ_L

Inclusion process

• L fixed, $N \to \infty$, $d = d_N \ll 1/\log N$, time scale t/d_N

Coarsening for p(x,y) symmetric, $Nd_N \to \infty$ [G., Redig, Vafayi (2013)]Stat. dynamics with multiple scales[Bianchi, Dommers, Giardiná (2017)]

Nucleation and coarsening/MF limits

- Jatuviriyapornchai, G., Stoch. Proc. Appl. 129(4), 1455-1475 (2019)
- Jatuviriyapornchai, G., J. Phys. A: Math. Theor. 49(18), 185005 (2016)
- Godréche, Drouffe, J. Phys. A: Math. Theor. 50(1), 015005 (2016)
- Godréche, Luck, J. Phys. A: Math. Theor. 38(33), 7215 (2005)
- Y.-X. Chau, C. Connaughton, S. G., J. Stat. Mech., P11031 (2015)
- J. Cao, P. Chleboun, S. G., J. Stat. Phys. 155, 523543 (2014)
- S. G., F. Redig, K. Vafayi, Electron. J. Probab. 18, 123 (2013)

Mean-field equation

SPS with generator $\mathcal{L}f(\boldsymbol{\eta}) = \sum_{x,y \in \Lambda} p(x,y)u(\eta_x,\eta_y) (f(\boldsymbol{\eta}^{x,y}) - f(\boldsymbol{\eta}))$

Empirical measures

$$F_k^L(\eta) = \frac{1}{L} \sum_{x \in \Lambda} \delta_{\eta_x, k} \in [0, 1]$$

Assume • complete graph p(x, y) = 1/(L-1)

- jump rates $u(k,l) \le C_1 k(C_2 + l)$
- initial conditions $\eta(0)$ such that $F_k^L(\eta(0)) \to f(0)$ on \mathbb{N}_0 $m_0(0) = 1$, $m_1(0) = \sum_k k f_k(0) = \rho < \infty$, $m_2(0) < \infty$

and $\alpha_1, \ \alpha_2 > 0$ such that for all $L \ge 1$

$$\eta(0) \in \Omega_{\alpha} := \left\{ \eta : \frac{1}{L} \sum_{x \in \Lambda} \eta_x < \alpha_1, \ \frac{1}{L} \sum_{x \in \Lambda} \eta_x^2 < \alpha_2 \right\}$$

 \rightarrow for example $\eta_x(0) \sim f(0)$ i.i.d. bounded

Mean-field equation

Theorem – LLN for empirical process

Under above assumptions, for all $k \in \mathbb{N}_0$ the empirical processes $(F_k^L(\eta(t)) : t \ge 0)$ converge weakly on path space to $(f_k(t) : t \ge 0)$ as $L \to \infty$, which are given as the unique solution of the **mean-field (rate) equation**

$$\frac{d}{dt}f_k(t) = \sum_{l\geq 0} \left(u(k+1,l)f_l(t)f_{k+1}(t) + u(l,k-1)f_l(t)f_{k-1}(t) \right) \\ - \sum_{l\geq 0} \left(u(k,l) + u(l,k) \right) f_l(t)f_k(t) \quad \text{for all } k\geq 0 \ , \qquad \text{(MFE)}$$

with initial condition f(0) given above.

Mean-field equation

Theorem – LLN for empirical process

Under above assumptions, for all $k \in \mathbb{N}_0$ the empirical processes $(F_k^L(\eta(t)) : t \ge 0)$ converge weakly on path space to $(f_k(t) : t \ge 0)$ as $L \to \infty$, which are given as the unique solution of the **mean-field (rate) equation**

$$\begin{aligned} \frac{d}{dt}f_k(t) = & \sum_{l \ge 0} \left(u(k+1,l)f_l(t)f_{k+1}(t) + u(l,k-1)f_l(t)f_{k-1}(t) \right) \\ & - \sum_{l \ge 0} \left(u(k,l) + u(l,k) \right) f_l(t)f_k(t) \quad \text{for all } k \ge 0 \ , \qquad \text{(MFE)} \end{aligned}$$

with initial condition f(0) given above.

• This implies in particular uniqueness of the solution to (MFE) for given f(0), • as well as convergence of expectations,

$$f_k^L(t) := \mathbb{E}^L \left[F_k^L(\eta(t)) \right] = \frac{1}{L} \sum_{x \in \Lambda} \mathbb{P}^L \left[\eta_x(t) = k \right] \to f_k(t) \; .$$

Propagation of chaos

Assume in addition symmetry of initial conditions, i.e.

the law of $\left\{\eta_x(0): x\in\Lambda\right\}$ is permutation invariant for each $L\geq 1$.

Corollary – Propagation of chaos

(see e.g. [e.g. dai Pra (2017)])

Under the conditions of the Theorem and above, for any finite-dimensional marginal with distinct $x_1, \ldots, x_m \in \Lambda$, $m \ge 1$, we have for any T > 0

 $\left(\eta_{x_i}(t):t\in[0,T]
ight)$ converge to independent birth-death chains $\;,\;$

with (non-linear) master equation (MFE) and generator

$$\mathcal{L}_{f(t)}h(k) = \alpha_k(t)[h(k+1) - h(k)] + \beta_k(t)[h(k-1) - h(k)] ,$$

with rates $\alpha_k(t) = \sum_{l \ge 0} u(l,k)f_l(t)$ and $\beta_k(t) = \sum_{l \ge 0} u(k,l)f_l(t) .$

[Gärtner (1988) WASEP; Rezakhanlou (1994) SSEP and ZRP, (1996) multi-type model ...]

- **(**) existence of limits $t \mapsto f(t)$ via tightness
- Iimits are solutions of (MFE)
- uniqueness of solutions of (MFE)

- **(**) existence of limits $t \mapsto f(t)$ via tightness
- Iimits are solutions of (MFE)
- uniqueness of solutions of (MFE)

$$\begin{split} \text{Moments.} \ m_n^L(t) &:= \mathbb{E}^L\Big[\sum_{k\geq 0} k^n F_k^L(\eta(t))\Big] = \sum_{k\geq 0} k^n f_k^L(t) \\ m_0^L(t) &\equiv 1 \quad \text{and} \quad m_1^L(t) \equiv m_1^L(0) \xrightarrow{L \to \infty} \rho \ . \end{split}$$
 Lemma. $C>0$ such that $m_2^L(t) \leq (\alpha_2 + Ct) e^{Ct}$ for all $t\geq 0, \ L\geq 1$,

using $\frac{d}{dt}\mathbb{E}^{L}[F_{k}^{L}(\eta(t))] = \mathbb{E}^{L}[\mathcal{L}F_{k}^{L}(\eta(t))]$ and Gronwall.

1. Tightness. For each bounded $h : \mathbb{N}_0 \to \mathbb{R}$ the law of

$$t \mapsto H(\eta(t)) := \sum_{k \ge 0} h_k F_k^L(\eta(t))$$

on path space $D_{[0,\infty)}(\mathbb{R})$ is tight as $L \to \infty$.

Using a version of Aldous' criterion, $\left|\sum_{k} h_k F_k^L(\eta)\right| \le \|h\|_{\infty}$ and Markov's inequality we need to establish

 $\limsup_{L\to\infty}\sup_{t<\delta}\sup_{\zeta\in\Omega_\alpha}\mathbb{E}^L_\zeta\big[|H(\eta(t))-H(\zeta)|\big]\to0\quad\text{as }\delta\to0^+\ .$

1. Tightness. For each bounded $h : \mathbb{N}_0 \to \mathbb{R}$ the law of

$$t \mapsto H(\eta(t)) := \sum_{k \ge 0} h_k F_k^L(\eta(t))$$

on path space $D_{[0,\infty)}(\mathbb{R})$ is tight as $L \to \infty$.

Using a version of Aldous' criterion, $\left|\sum_{k} h_k F_k^L(\eta)\right| \le \|h\|_{\infty}$ and Markov's inequality we need to establish

 $\limsup_{L\to\infty} \sup_{t<\delta} \sup_{\zeta\in\Omega_\alpha} \mathbb{E}^L_{\zeta} \big[|H(\eta(t)) - H(\zeta)| \big] \to 0 \quad \text{as } \delta \to 0^+ \ .$

Itô's formula $M_h(t) := H(\eta(t)) - H(\eta(0)) - \int_0^t \mathcal{L}H(\eta(s)) ds$

is a local m'gale with pred. QV $\langle M_h
angle(t) = \int_0^t [\mathcal{L}H^2 - 2H\mathcal{L}H](\eta(s))ds$.

$$\mathcal{L}H(\eta) = \sum_{k\geq 0} h_k \left[F_{k-1}^L(\eta) \sum_{l\geq 1} u(l,k-1) F_l^L(\eta) + F_{k+1}^L(\eta) \sum_{l\geq 0} u(k+1,l) F_l^L(\eta) - F_k^L(\eta) \sum_{l\geq 0} \left(u(k,l) + u(l,k) \right) F_l^L(\eta) \right] (1+1/L) + \Delta_L(\eta)$$

$$\mathbb{E}^{L}\left[\left|H(\eta(t)) - H(\eta(0))\right|\right] \leq \underbrace{\int_{0}^{t} \mathbb{E}^{L} |\mathcal{L}H(\eta(s))| ds}_{(1)} + \underbrace{\mathbb{E}^{L}\left[[M_{h}](t)\right]}_{(2)}.$$

with estimates

$$(1) \leq t \|h\|_{\infty} \left(4C_1 \alpha_1 \left(\alpha_1 + C_2\right) + \frac{C}{L} (1+t) e^{Ct} \right) (2) \leq t \|h\|_{\infty}^2 \frac{1}{L} \left(4C_1 \alpha_1 \left(\alpha_1 + C_2\right) + \frac{C}{L} (1+t) e^{Ct} \right)$$

Both vanish as $t \leq \delta \rightarrow 0$ uniformly in L which implies **tightness**.

$$\mathbb{E}^{L}\left[\left|H(\eta(t)) - H(\eta(0))\right|\right] \leq \underbrace{\int_{0}^{t} \mathbb{E}^{L} |\mathcal{L}H(\eta(s))| ds}_{(1)} + \underbrace{\mathbb{E}^{L}\left[[M_{h}](t)\right]}_{(2)}.$$

with estimates

$$(1) \leq t \|h\|_{\infty} \left(4C_1 \alpha_1 \left(\alpha_1 + C_2\right) + \frac{C}{L} (1+t) e^{Ct} \right) (2) \leq t \|h\|_{\infty}^2 \frac{1}{L} \left(4C_1 \alpha_1 \left(\alpha_1 + C_2\right) + \frac{C}{L} (1+t) e^{Ct} \right)$$

Both vanish as $t \leq \delta \rightarrow 0$ uniformly in L which implies **tightness**.

2. Estimate for (2) implies $\mathbb{E}^{L}[[M_{h}](t)] \to 0$ as $L \to \infty$ for all $t \ge 0$, so the martingale vanishes and each limit solves a weak version of (MFE)

$$\sum_{k\geq 0} h_k \big(f_k(t) - f_k(0) \big) = \int_0^t \sum_{k\geq 0} h_k \big(\mathcal{L}_{f(s)}^{\dagger} f(s) \big)_k \, ds \; .$$

- 3. Uniqueness of solutions of (MFE)
 - moments $m_n(t) = \sum_{k \ge 0} k^n f_k(t)$

 $m_0(t) \equiv m_0(0)$ and $m_1(t) \equiv m_1(0) = \rho$ are conserved.

 $\label{eq:Gronwall estimate} \quad m_2^L(t) \leq (\alpha_2 + Ct) e^{Ct} \mbox{ for all } t \geq 0 \ .$

• Consider $f(t), \hat{f}(t)$ with $f(0) = \hat{f}(0) \in \mathcal{P}(\mathbb{N}_0)$ and establish Gronwall for

$$\theta(t) := \sum_{k \ge 0} (k+1) \left| \Delta_k(t) \right| \quad \text{where} \quad \Delta_k(t) := f_k(t) - \hat{f}_k(t) \ .$$

[Esenturk (2017), Schlichting (2018)], following classical proof [Ball, Penrose (1986)]

- 3. Uniqueness of solutions of (MFE)
 - moments $m_n(t) = \sum_{k \ge 0} k^n f_k(t)$

 $m_0(t) \equiv m_0(0)$ and $m_1(t) \equiv m_1(0) = \rho$ are conserved.

 $\label{eq:Gronwall estimate} \quad m_2^L(t) \leq (\alpha_2 + Ct) e^{Ct} \mbox{ for all } t \geq 0 \ .$

• Consider $f(t), \hat{f}(t)$ with $f(0) = \hat{f}(0) \in \mathcal{P}(\mathbb{N}_0)$ and establish Gronwall for

$$\theta(t) := \sum_{k \ge 0} (k+1) \left| \Delta_k(t) \right| \quad \text{where} \quad \Delta_k(t) := f_k(t) - \hat{f}_k(t) \ .$$

[Esenturk (2017), Schlichting (2018)], following classical proof [Ball, Penrose (1986)]

Extensions. multiple particle jumps and quantitative bounds

systematic error
$$\left| \mathbb{E}^{L} \Big[H(\eta(t)) - \sum_{k \ge 0} h_{k} f_{k}(t) \Big] \right| \le C e^{Ct} \frac{\|h\|_{\infty}}{L}$$

random error $\mathbb{E}^{L} \Big[|H(\eta(t)) - \mathbb{E}^{L} [H(\eta(t))]|^{2} \Big]^{1/2} \le C e^{Ct} \frac{\|h\|_{\infty}}{\sqrt{L}}$

Scaling analysis for ZRP

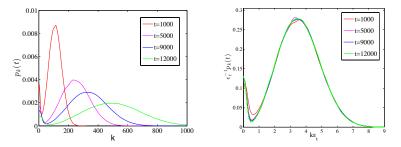
Scaling ansatz for phase separated solution with $m_1(t) = \rho > \rho_c$

$$f_k(t) = f_k^{\mathrm{bulk}}(t) + \epsilon_t^2 h(k\epsilon_t) \quad \text{as } t \to \infty$$

with scale $\epsilon_t \to 0$ and scaling function h(u), u > 0, and $h(u) \to 0$ as $u \to \infty$

We have
$$f^{\text{bulk}}(t) \to f^{\rho_c}$$
 and $\sum_{k>0} k \epsilon_t^2 h(k \epsilon_t) \to \int_{u>0} u h(u) \, du = \rho - \rho_c$.

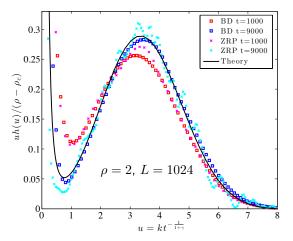
ZRP with rates g(k) = 1 + b/k, b = 4, $\rho_c = 1/2$, $\rho = 10$



Scaling analysis for ZRP

$$\epsilon_t = t^{-1/2}$$
, $h''(u) + \left(\frac{u}{2} - A + \frac{b}{u}\right)h'(u) + \left(1 - \frac{b}{u^2}\right)h(u) = 0$

[Godréche (2003); J., G. (2016); Godréche, Drouffe (2016)]



Coarsening scaling law for ZRP

ZRP with rates g(k) = 1 + b/k with $\rho_c = 1/(b-2)$.

Provided we can rigorously establish the scaling solution f(t) for $m(0)=\rho>\rho_c$, we would have for the empirical measures with $\epsilon_t=t^{-1/2}$

$$\lim_{t \to \infty} \lim_{L \to \infty} \frac{1}{\epsilon_t^2} F^L_{[u/\epsilon_t]}(\boldsymbol{\eta}(t)) = h(u) ,$$

where h solves $h''(u) + \left(\frac{u}{2} - A + \frac{b}{u}\right)h'(u) + \left(1 - \frac{b}{u^2}\right)h(u) = 0$.

Coarsening scaling law for ZRP

ZRP with rates g(k) = 1 + b/k with $\rho_c = 1/(b-2)$.

Provided we can rigorously establish the scaling solution f(t) for $m(0)=\rho>\rho_c$, we would have for the empirical measures with $\epsilon_t=t^{-1/2}$

$$\lim_{t \to \infty} \lim_{L \to \infty} \frac{1}{\epsilon_t^2} F^L_{[u/\epsilon_t]}(\boldsymbol{\eta}(t)) = h(u) ,$$

where h solves $h''(u) + \left(\frac{u}{2} - A + \frac{b}{u}\right)h'(u) + \left(1 - \frac{b}{u^2}\right)h(u) = 0$.

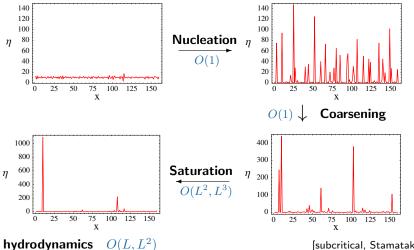
For size-biased samples $\bar{\eta}_x$ of occupation numbers this means

$$\lim_{t \to \infty} \lim_{L \to \infty} \epsilon_t \bar{\eta}_x(t) = \begin{cases} 0 \ , \text{ with prob. } \rho_c / \rho \\ U \ , \text{ with prob. } 1 - \rho_c / \rho \end{cases}$$

where U has density $uh(u)/(\rho-\rho_c).$

Dynamics of condensation

ZRP with q(k) = 1 + b/k, b = 4, $\rho_c = 1/(b-2) = 0.5$, $\rho = 10$



[subcritical, Stamatakis (2015)]

stationary dynamics of condensate $O(L^{1+b}), O(N^{1+b})$

Stationary dynamics/metastability

Seo, CMP 366(2), 781839 (2019)

Landim CMP 330(1), 132 (2014)

Armendáriz, G., Loulakis. PTRF 169(12), 105-175 (2017)

Bovier, Neukirch (2014)

Beltrán Landim PTRF 152(3-4), 781807 (2012)

Canonical measures and condensation

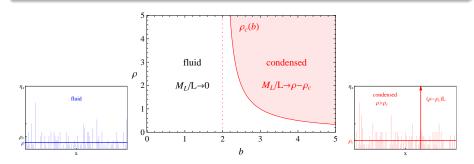
fixed number of particles N: $\pi_{L,N}[\cdot] = \frac{\nu_{\phi}[\cdot \cap \sum_{x} \eta_{x} = N]}{\nu_{\phi}[\sum_{x} \eta_{x} = N]}$

Equivalence of ensembles

In the thermodynamic limit $\ L,N \rightarrow \infty$, $\ N/L \rightarrow \rho$

$$\pi_{L,N} \rightarrow \nu_{\phi}$$
 where $\begin{cases} I \end{cases}$

$$\begin{cases} R(\phi) = \rho \ , \ \rho \le \rho_c \\ \phi = \phi_c \ , \ \rho \ge \rho_c \end{cases}$$



[Jeon, March, Pittel '00; G., Schütz, Spohn '03; Armendáriz, Loulakis '09 with G. '13; Chleboun, G. '14]

S. Grosskinsky (Warwick)

Metastability

Stationary dynamics of the condensate

$$\begin{split} \Lambda &= \mathbb{T}_L, \ g(k) = \mathbb{1}_{k>0}(1+\frac{b}{k}) \ , \quad b > 21 \ (!) \ , \quad p(x,y) \ \text{NN symmetric} \\ M_L(\boldsymbol{\eta}) &= \max_{x \in \Lambda} \eta_x \ , \quad \psi_L(\boldsymbol{\eta}) = \min \left\{ x \in \Lambda : \eta_x = M_L(\boldsymbol{\eta}) \right\} \end{split}$$

Metastability

Stationary dynamics of the condensate

$$\begin{split} \Lambda &= \mathbb{T}_L, \ g(k) = \mathbb{1}_{k>0}(1+\frac{b}{k}) \ , \quad b > 21 \ (!) \ , \quad p(x,y) \ \text{NN symmetric} \\ M_L(\boldsymbol{\eta}) &= \max_{x \in \Lambda} \eta_x \ , \quad \psi_L(\boldsymbol{\eta}) = \min \left\{ x \in \Lambda : \eta_x = M_L(\boldsymbol{\eta}) \right\} \end{split}$$

Theorem

Let $\eta_0 \sim \pi_{L,N}$ and consider the thermodynamic limit $L, N \to \infty$ with $L/N \to \rho > \rho_c$. On the scale $\theta_L = L^{1+b}$, $\left(\frac{1}{L}\psi_L(\eta_{\theta_L t}) : t \ge 0\right)$ converges weakly on path space $D([0,\infty),\mathbb{T})$ to a Markov process $(Y_t : t \ge 0)$ with stationary, independent increments and generator

$$\mathcal{L}_{\mathbb{T}}f(u) = \int_{\mathbb{T}\setminus\{0\}} \left(f(u+v) - f(u)\right) \frac{C_{b,\rho}}{|v|(1-|v|)} \, dy$$

for all $f \in C^1(\mathbb{T})$.

$$C_{b,\rho} = \left(\frac{b-1}{b}\right) (\rho - \rho_c)^b \left(\Gamma(1+b) \int_0^{\rho - \rho_c} z^b (\rho - \rho_c - z)^b dz \right)^{-1}$$

Method of proof

Potential theory. [Bovier, Eckhoff, Gayrard, Klein (2001,2002) ... Bovier, den Hollander (2015)]

- potential wells $\mathcal{E}_x \subset \{\eta : \psi_L(\eta) = x\}$, $\pi_{L,N}(\cup_{x \in \Lambda} \mathcal{E}_x) \to 1$ time spent outside wells can be ignored
- effective rates $R_L(x,y) = \mathbb{E}_{\pi_{L,N}|\mathcal{E}^x} \sum_{\boldsymbol{\zeta}} r(.,\boldsymbol{\zeta}) \mathbb{P}_{\boldsymbol{\zeta}}(\boldsymbol{\eta}_{\tau} \in \mathcal{E}_y)$ sharp bounds via capacities $\simeq C_{b,\rho} \operatorname{cap}_{\Lambda}(x,y) L/\theta_L$
 - \rightarrow bounds match only after regularization!

Method of proof

Potential theory. [Bovier, Eckhoff, Gayrard, Klein (2001,2002) ... Bovier, den Hollander (2015)]

- potential wells $\mathcal{E}_x \subset \{\eta : \psi_L(\eta) = x\}$, $\pi_{L,N}(\cup_{x \in \Lambda} \mathcal{E}_x) \to 1$ time spent outside wells can be ignored
- effective rates $R_L(x, y) = \mathbb{E}_{\pi_{L,N}|\mathcal{E}^x} \sum_{\zeta} r(., \zeta) \mathbb{P}_{\zeta}(\eta_{\tau} \in \mathcal{E}_y)$ sharp bounds via capacities $\simeq C_{b,\rho} \operatorname{cap}_{\Lambda}(x, y) L/\theta_L$ \rightarrow bounds match only after regularization!

Martingale approach. [Landim, Beltran (2011,2012) ...]

- tightness of $Y_t^L := \frac{1}{L} \psi_L(\eta_{\theta_L t})$ as $L \to \infty$ involves uniform upper bounds on rates (coupling)
- martingale problem for all $f \in C^1(\mathbb{T})$

$$f(Y^L_t) - f(Y^L_0) - \int_0^t \mathcal{L}f(Y^L_s)\,ds \quad \text{is a martingale}$$

• equilibration replace $\psi_L(\eta_{\theta_L t})$ with a process on Λ with rates R_L show that $t_{\rm rel} \leq CL^4$ and $t_{\rm mix}(\epsilon) \leq CL^5 \log \frac{1}{\epsilon} \ll \theta_L$ on the well

Method of proof

Potential theory. [Bovier, Eckhoff, Gayrard, Klein (2001,2002) ... Bovier, den Hollander (2015)]

- potential wells $\mathcal{E}_x \subset \{\eta : \psi_L(\eta) = x\}$, $\pi_{L,N}(\cup_{x \in \Lambda} \mathcal{E}_x) \to 1$ time spent outside wells can be ignored
- effective rates $R_L(x, y) = \mathbb{E}_{\pi_{L,N}|\mathcal{E}^x} \sum_{\zeta} r(., \zeta) \mathbb{P}_{\zeta}(\eta_{\tau} \in \mathcal{E}_y)$ sharp bounds via capacities $\simeq C_{b,\rho} \operatorname{cap}_{\Lambda}(x, y) L/\theta_L$ \rightarrow bounds match only after regularization!

Martingale approach. [Landim, Beltran (2011,2012) ...]

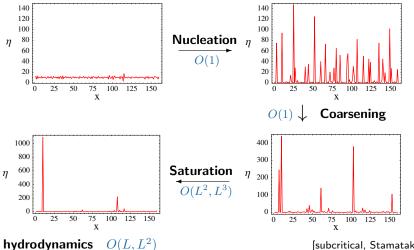
- tightness of $Y_t^L := \frac{1}{L} \psi_L(\eta_{\theta_L t})$ as $L \to \infty$ involves uniform upper bounds on rates (coupling)
- martingale problem for all $f \in C^1(\mathbb{T})$

$$f(Y_t) - f(Y_0) - \int_0^t \mathcal{L}_{\mathbb{T}} f(Y_s) \, ds$$
 is a martingale

• equilibration replace $\psi_L(\eta_{\theta_L t})$ with a process on Λ with rates R_L show that $t_{\rm rel} \leq CL^4$ and $t_{\rm mix}(\epsilon) \leq CL^5 \log \frac{1}{\epsilon} \ll \theta_L$ on the well

Dynamics of condensation

ZRP with q(k) = 1 + b/k, b = 4, $\rho_c = 1/(b-2) = 0.5$, $\rho = 10$



[subcritical, Stamatakis (2015)]

stationary dynamics of condensate $O(L^{1+b}), O(N^{1+b})$